范数变体的存在性

C. Haesemeyer, C. Weibel
{"title":"范数变体的存在性","authors":"C. Haesemeyer, C. Weibel","doi":"10.2307/j.ctv941tx2.15","DOIUrl":null,"url":null,"abstract":"This chapter constructs norm varieties for symbols ª = {𝑎1, ...,𝑎𝑛} over a field 𝑘 of characteristic 0, and starts the proof that norm varieties are Rost varieties. It first recalls the definition of a norm variety for a symbol ª in 𝐾𝑀\n 𝑛(𝑘)/𝓁; if 𝑛 ≥ 2 and 𝑘 is 𝓁-special, norm varieties are geometrically irreducible. Next, the chapter uses the Chain Lemma to produce a specific ν‎\n n−1-variety ℙ(𝒜), and a pencil Q of splitting varieties over 𝔸1—{0} whose fibers 𝑄𝑊 are fixed point equivalent to ℙ (𝒜). Using a bordism result, this chapter shows that any equivariant resolution 𝑄(ª) of 𝑄𝑊 is a ν‎\n n−1-variety. Next, one of Rost's degree formulas is used to show that any norm variety for ª is ν‎\n n−1 because 𝑄(ª) is. Finally, a norm variety for ª is constructed by induction on 𝑛, making use of the global inductive assumption that BL(n − 1) holds.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Norm Varieties\",\"authors\":\"C. Haesemeyer, C. Weibel\",\"doi\":\"10.2307/j.ctv941tx2.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter constructs norm varieties for symbols ª = {𝑎1, ...,𝑎𝑛} over a field 𝑘 of characteristic 0, and starts the proof that norm varieties are Rost varieties. It first recalls the definition of a norm variety for a symbol ª in 𝐾𝑀\\n 𝑛(𝑘)/𝓁; if 𝑛 ≥ 2 and 𝑘 is 𝓁-special, norm varieties are geometrically irreducible. Next, the chapter uses the Chain Lemma to produce a specific ν‎\\n n−1-variety ℙ(𝒜), and a pencil Q of splitting varieties over 𝔸1—{0} whose fibers 𝑄𝑊 are fixed point equivalent to ℙ (𝒜). Using a bordism result, this chapter shows that any equivariant resolution 𝑄(ª) of 𝑄𝑊 is a ν‎\\n n−1-variety. Next, one of Rost's degree formulas is used to show that any norm variety for ª is ν‎\\n n−1 because 𝑄(ª) is. Finally, a norm variety for ª is constructed by induction on 𝑛, making use of the global inductive assumption that BL(n − 1) holds.\",\"PeriodicalId\":145287,\"journal\":{\"name\":\"The Norm Residue Theorem in Motivic Cohomology\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Norm Residue Theorem in Motivic Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv941tx2.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章构造符号ª={𝑎1,…,𝑎𝑛}在特征为0的域𝑘上,并开始证明范数品种是Rost品种。它首先回顾了在𝐾𝑀𝑛(𝑘)/𝓁中对符号ª的范数变化的定义;当𝑛≥2且𝑘=𝓁-special时,范数是几何上不可约的。接下来,本章使用链式引理来产生一个特定的ν _ n−1-变种(焦躁),以及一个由𝔸1 -{0}上的分裂变种组成的铅笔Q,其纤维𝑄𝑊是等价于(焦躁)的不动点。本章利用一个方程结果,证明了𝑄𝑊的任意等变分辨率𝑄(ª)都是ν _ n−1的变化。接下来,一个罗斯特的度公式被用来证明ª的任何范数变化都是ν ν n−1,因为𝑄(ª)是。最后,利用BL(n−1)成立的全局归纳假设,通过𝑛上的归纳法构造了ª的范数变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Norm Varieties
This chapter constructs norm varieties for symbols ª = {𝑎1, ...,𝑎𝑛} over a field 𝑘 of characteristic 0, and starts the proof that norm varieties are Rost varieties. It first recalls the definition of a norm variety for a symbol ª in 𝐾𝑀 𝑛(𝑘)/𝓁; if 𝑛 ≥ 2 and 𝑘 is 𝓁-special, norm varieties are geometrically irreducible. Next, the chapter uses the Chain Lemma to produce a specific ν‎ n−1-variety ℙ(𝒜), and a pencil Q of splitting varieties over 𝔸1—{0} whose fibers 𝑄𝑊 are fixed point equivalent to ℙ (𝒜). Using a bordism result, this chapter shows that any equivariant resolution 𝑄(ª) of 𝑄𝑊 is a ν‎ n−1-variety. Next, one of Rost's degree formulas is used to show that any norm variety for ª is ν‎ n−1 because 𝑄(ª) is. Finally, a norm variety for ª is constructed by induction on 𝑛, making use of the global inductive assumption that BL(n − 1) holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信