高光谱成像测量离体乳腺癌阳性边缘的分类

Reza Pourreza-Shahri, F. Saki, N. Kehtarnavaz, P. Leboulluec, H. Liu
{"title":"高光谱成像测量离体乳腺癌阳性边缘的分类","authors":"Reza Pourreza-Shahri, F. Saki, N. Kehtarnavaz, P. Leboulluec, H. Liu","doi":"10.1109/ICIP.2013.6738289","DOIUrl":null,"url":null,"abstract":"This paper presents our recent development of a classification algorithm for identification of breast cancer margins measured by hyperspectral imaging for the purpose of lowering the number of missed positive margins in breast cancer lumpectomy. After extracting Fourier coefficient selection features and reducing the dimensionality of hyperspectral image data via the Minimum Redundancy Maximum Relevance method, an SVM classifier involving a radial basis kernel function is deployed to separate cancerous tissues from normal tissues. By examining exvivo breast cancer hyperspectral images tagged by a pathologist, the developed classification approach is shown to achieve a sensitivity of about 98% and a specificity of about 99%.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Classification of ex-vivo breast cancer positive margins measured by hyperspectral imaging\",\"authors\":\"Reza Pourreza-Shahri, F. Saki, N. Kehtarnavaz, P. Leboulluec, H. Liu\",\"doi\":\"10.1109/ICIP.2013.6738289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our recent development of a classification algorithm for identification of breast cancer margins measured by hyperspectral imaging for the purpose of lowering the number of missed positive margins in breast cancer lumpectomy. After extracting Fourier coefficient selection features and reducing the dimensionality of hyperspectral image data via the Minimum Redundancy Maximum Relevance method, an SVM classifier involving a radial basis kernel function is deployed to separate cancerous tissues from normal tissues. By examining exvivo breast cancer hyperspectral images tagged by a pathologist, the developed classification approach is shown to achieve a sensitivity of about 98% and a specificity of about 99%.\",\"PeriodicalId\":388385,\"journal\":{\"name\":\"2013 IEEE International Conference on Image Processing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文介绍了我们最近开发的一种分类算法,用于通过高光谱成像来识别乳腺癌边缘,目的是降低乳腺癌肿瘤切除术中遗漏的阳性边缘的数量。在提取傅里叶系数选择特征后,利用最小冗余最大相关方法对高光谱图像数据进行降维,部署径向基核函数支持向量机分类器进行癌组织与正常组织的分离。通过检查由病理学家标记的体外乳腺癌高光谱图像,开发的分类方法显示灵敏度约为98%,特异性约为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of ex-vivo breast cancer positive margins measured by hyperspectral imaging
This paper presents our recent development of a classification algorithm for identification of breast cancer margins measured by hyperspectral imaging for the purpose of lowering the number of missed positive margins in breast cancer lumpectomy. After extracting Fourier coefficient selection features and reducing the dimensionality of hyperspectral image data via the Minimum Redundancy Maximum Relevance method, an SVM classifier involving a radial basis kernel function is deployed to separate cancerous tissues from normal tissues. By examining exvivo breast cancer hyperspectral images tagged by a pathologist, the developed classification approach is shown to achieve a sensitivity of about 98% and a specificity of about 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信