Reza Pourreza-Shahri, F. Saki, N. Kehtarnavaz, P. Leboulluec, H. Liu
{"title":"高光谱成像测量离体乳腺癌阳性边缘的分类","authors":"Reza Pourreza-Shahri, F. Saki, N. Kehtarnavaz, P. Leboulluec, H. Liu","doi":"10.1109/ICIP.2013.6738289","DOIUrl":null,"url":null,"abstract":"This paper presents our recent development of a classification algorithm for identification of breast cancer margins measured by hyperspectral imaging for the purpose of lowering the number of missed positive margins in breast cancer lumpectomy. After extracting Fourier coefficient selection features and reducing the dimensionality of hyperspectral image data via the Minimum Redundancy Maximum Relevance method, an SVM classifier involving a radial basis kernel function is deployed to separate cancerous tissues from normal tissues. By examining exvivo breast cancer hyperspectral images tagged by a pathologist, the developed classification approach is shown to achieve a sensitivity of about 98% and a specificity of about 99%.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Classification of ex-vivo breast cancer positive margins measured by hyperspectral imaging\",\"authors\":\"Reza Pourreza-Shahri, F. Saki, N. Kehtarnavaz, P. Leboulluec, H. Liu\",\"doi\":\"10.1109/ICIP.2013.6738289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our recent development of a classification algorithm for identification of breast cancer margins measured by hyperspectral imaging for the purpose of lowering the number of missed positive margins in breast cancer lumpectomy. After extracting Fourier coefficient selection features and reducing the dimensionality of hyperspectral image data via the Minimum Redundancy Maximum Relevance method, an SVM classifier involving a radial basis kernel function is deployed to separate cancerous tissues from normal tissues. By examining exvivo breast cancer hyperspectral images tagged by a pathologist, the developed classification approach is shown to achieve a sensitivity of about 98% and a specificity of about 99%.\",\"PeriodicalId\":388385,\"journal\":{\"name\":\"2013 IEEE International Conference on Image Processing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of ex-vivo breast cancer positive margins measured by hyperspectral imaging
This paper presents our recent development of a classification algorithm for identification of breast cancer margins measured by hyperspectral imaging for the purpose of lowering the number of missed positive margins in breast cancer lumpectomy. After extracting Fourier coefficient selection features and reducing the dimensionality of hyperspectral image data via the Minimum Redundancy Maximum Relevance method, an SVM classifier involving a radial basis kernel function is deployed to separate cancerous tissues from normal tissues. By examining exvivo breast cancer hyperspectral images tagged by a pathologist, the developed classification approach is shown to achieve a sensitivity of about 98% and a specificity of about 99%.