基于patch的稀疏表示学习字典重构EIT图像

Qi Wang, Hongjun Sun, Jianming Wang, Ronghua Zhang, Huaxiang Wang
{"title":"基于patch的稀疏表示学习字典重构EIT图像","authors":"Qi Wang, Hongjun Sun, Jianming Wang, Ronghua Zhang, Huaxiang Wang","doi":"10.1109/I2MTC.2015.7151597","DOIUrl":null,"url":null,"abstract":"Image reconstruction for electrical impedance tomography (EIT) is a nonlinear problem. A generalized inverse operator is usually ill-posed and ill-conditioned. Therefore, the solutions for EIT are not unique and highly sensitive to the measurement noise. To improve the image quality, a new image reconstruction algorithm for EIT based on patch-based sparse representation is proposed. For each iterative step, the sparsifying dictionary optimization and image reconstruction are performed alternately. The proposed algorithm has been evaluated by simulation with noise for different conductivity distributions. It can tolerate a relatively high level of noise in the measured voltages of EIT.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reconstruction of EIT images via patch based sparse representation over learned dictionaries\",\"authors\":\"Qi Wang, Hongjun Sun, Jianming Wang, Ronghua Zhang, Huaxiang Wang\",\"doi\":\"10.1109/I2MTC.2015.7151597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image reconstruction for electrical impedance tomography (EIT) is a nonlinear problem. A generalized inverse operator is usually ill-posed and ill-conditioned. Therefore, the solutions for EIT are not unique and highly sensitive to the measurement noise. To improve the image quality, a new image reconstruction algorithm for EIT based on patch-based sparse representation is proposed. For each iterative step, the sparsifying dictionary optimization and image reconstruction are performed alternately. The proposed algorithm has been evaluated by simulation with noise for different conductivity distributions. It can tolerate a relatively high level of noise in the measured voltages of EIT.\",\"PeriodicalId\":424006,\"journal\":{\"name\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2015.7151597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电阻抗断层成像(EIT)的图像重建是一个非线性问题。广义逆算子通常是不适定和不适条件的。因此,EIT的解决方案不是唯一的,并且对测量噪声高度敏感。为了提高图像质量,提出了一种基于patch-based稀疏表示的EIT图像重建算法。对于每个迭代步骤,交替执行稀疏字典优化和图像重建。对不同电导率分布下的噪声进行了仿真。在EIT的测量电压中,它可以承受相对较高的噪声水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of EIT images via patch based sparse representation over learned dictionaries
Image reconstruction for electrical impedance tomography (EIT) is a nonlinear problem. A generalized inverse operator is usually ill-posed and ill-conditioned. Therefore, the solutions for EIT are not unique and highly sensitive to the measurement noise. To improve the image quality, a new image reconstruction algorithm for EIT based on patch-based sparse representation is proposed. For each iterative step, the sparsifying dictionary optimization and image reconstruction are performed alternately. The proposed algorithm has been evaluated by simulation with noise for different conductivity distributions. It can tolerate a relatively high level of noise in the measured voltages of EIT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信