基于多级残差自注意机制的单幅图像超分辨率

Junfeng Mao, Yaqi Hu
{"title":"基于多级残差自注意机制的单幅图像超分辨率","authors":"Junfeng Mao, Yaqi Hu","doi":"10.1109/PRML52754.2021.9520742","DOIUrl":null,"url":null,"abstract":"The existing network models achieve good reconstruction effect by deepening the network depth, but most of them have problems such as insufficient feature information extraction, single scale of feature information, weak perception of valuable information and so on. In order to solve this problem, this paper proposes a single image super-resolution network based on multi-level residual self attention mechanism. Firstly, shallow features and deep features are extracted from the input low resolution image hierarchically, and then convolution operation is performed on the deep features and shallow features to obtain high resolution image. Compared with the existing comparison methods, the reconstruction effect of this method is better, and the objective evaluation indexes PSNR and SSIM are also improved.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super Resolution of Single Image Based on Multi Level Residual Self Attention Mechanism\",\"authors\":\"Junfeng Mao, Yaqi Hu\",\"doi\":\"10.1109/PRML52754.2021.9520742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing network models achieve good reconstruction effect by deepening the network depth, but most of them have problems such as insufficient feature information extraction, single scale of feature information, weak perception of valuable information and so on. In order to solve this problem, this paper proposes a single image super-resolution network based on multi-level residual self attention mechanism. Firstly, shallow features and deep features are extracted from the input low resolution image hierarchically, and then convolution operation is performed on the deep features and shallow features to obtain high resolution image. Compared with the existing comparison methods, the reconstruction effect of this method is better, and the objective evaluation indexes PSNR and SSIM are also improved.\",\"PeriodicalId\":429603,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRML52754.2021.9520742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的网络模型通过加深网络深度获得了良好的重构效果,但大多存在特征信息提取不足、特征信息尺度单一、对有价值信息感知能力弱等问题。为了解决这一问题,本文提出了一种基于多级残差自注意机制的单幅图像超分辨网络。首先从输入的低分辨率图像中分层提取浅特征和深特征,然后对深特征和浅特征进行卷积运算,得到高分辨率图像。与现有的对比方法相比,该方法的重建效果更好,客观评价指标PSNR和SSIM也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super Resolution of Single Image Based on Multi Level Residual Self Attention Mechanism
The existing network models achieve good reconstruction effect by deepening the network depth, but most of them have problems such as insufficient feature information extraction, single scale of feature information, weak perception of valuable information and so on. In order to solve this problem, this paper proposes a single image super-resolution network based on multi-level residual self attention mechanism. Firstly, shallow features and deep features are extracted from the input low resolution image hierarchically, and then convolution operation is performed on the deep features and shallow features to obtain high resolution image. Compared with the existing comparison methods, the reconstruction effect of this method is better, and the objective evaluation indexes PSNR and SSIM are also improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信