{"title":"智能手机上的节能视频流","authors":"Wenjie Hu, G. Cao","doi":"10.1109/INFOCOM.2015.7218493","DOIUrl":null,"url":null,"abstract":"Video streaming on smartphone consumes lots of energy. One common solution is to download and buffer future video data for playback so that the wireless interface can be turned off most of time and then save energy. However, this may waste energy and bandwidth if the user skips or quits before the end of the video. Using a small buffer can reduce the bandwidth wastage, but may consume more energy and introduce rebuffering delay. In this paper, we analyze the power consumption during video streaming considering user skip and early quit scenarios. We first propose an offline method to compute the minimum power consumption, and then introduce an online solution to save energy based on whether the user tends to watch video for a long time or tends to skip. We have implemented the online solution on Android based smartphones. Experimental results and trace-driven simulation results show that that our method can save energy while achieving a better tradeoff between delay and bandwidth compared to existing methods.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Energy-aware video streaming on smartphones\",\"authors\":\"Wenjie Hu, G. Cao\",\"doi\":\"10.1109/INFOCOM.2015.7218493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video streaming on smartphone consumes lots of energy. One common solution is to download and buffer future video data for playback so that the wireless interface can be turned off most of time and then save energy. However, this may waste energy and bandwidth if the user skips or quits before the end of the video. Using a small buffer can reduce the bandwidth wastage, but may consume more energy and introduce rebuffering delay. In this paper, we analyze the power consumption during video streaming considering user skip and early quit scenarios. We first propose an offline method to compute the minimum power consumption, and then introduce an online solution to save energy based on whether the user tends to watch video for a long time or tends to skip. We have implemented the online solution on Android based smartphones. Experimental results and trace-driven simulation results show that that our method can save energy while achieving a better tradeoff between delay and bandwidth compared to existing methods.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video streaming on smartphone consumes lots of energy. One common solution is to download and buffer future video data for playback so that the wireless interface can be turned off most of time and then save energy. However, this may waste energy and bandwidth if the user skips or quits before the end of the video. Using a small buffer can reduce the bandwidth wastage, but may consume more energy and introduce rebuffering delay. In this paper, we analyze the power consumption during video streaming considering user skip and early quit scenarios. We first propose an offline method to compute the minimum power consumption, and then introduce an online solution to save energy based on whether the user tends to watch video for a long time or tends to skip. We have implemented the online solution on Android based smartphones. Experimental results and trace-driven simulation results show that that our method can save energy while achieving a better tradeoff between delay and bandwidth compared to existing methods.