病人麻醉状态的时间分类

L. Vefghi, D. Linkens
{"title":"病人麻醉状态的时间分类","authors":"L. Vefghi, D. Linkens","doi":"10.1109/INES.1997.632427","DOIUrl":null,"url":null,"abstract":"The goal of this study is to explore the ability of temporal neural network models to classification of patient anaesthetic states. Application of standard multilayer perceptron networks to recognise the states of anaesthesia already has produced impressive results. Encouraged by these results, we attempt to address the question of how such models can be expanded to capture some critical aspects of the dynamic nature of anaesthesia. An extension of the conventional multilayered feedforward networks to have memory for past values is undertaken to address the issue.","PeriodicalId":161975,"journal":{"name":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal classification of patient anaesthetic states\",\"authors\":\"L. Vefghi, D. Linkens\",\"doi\":\"10.1109/INES.1997.632427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study is to explore the ability of temporal neural network models to classification of patient anaesthetic states. Application of standard multilayer perceptron networks to recognise the states of anaesthesia already has produced impressive results. Encouraged by these results, we attempt to address the question of how such models can be expanded to capture some critical aspects of the dynamic nature of anaesthesia. An extension of the conventional multilayered feedforward networks to have memory for past values is undertaken to address the issue.\",\"PeriodicalId\":161975,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.1997.632427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.1997.632427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是探讨时间神经网络模型对患者麻醉状态分类的能力。应用标准多层感知器网络来识别麻醉状态已经产生了令人印象深刻的结果。受到这些结果的鼓舞,我们试图解决如何将这些模型扩展到捕获麻醉动态性质的一些关键方面的问题。对传统的多层前馈网络进行扩展,使其具有对过去值的记忆,以解决这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal classification of patient anaesthetic states
The goal of this study is to explore the ability of temporal neural network models to classification of patient anaesthetic states. Application of standard multilayer perceptron networks to recognise the states of anaesthesia already has produced impressive results. Encouraged by these results, we attempt to address the question of how such models can be expanded to capture some critical aspects of the dynamic nature of anaesthesia. An extension of the conventional multilayered feedforward networks to have memory for past values is undertaken to address the issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信