傅里叶-索博列夫级数的一致收敛性

T. Shakh-Emirov
{"title":"傅里叶-索博列夫级数的一致收敛性","authors":"T. Shakh-Emirov","doi":"10.31029/demr.12.5","DOIUrl":null,"url":null,"abstract":"Let $\\{\\varphi_{k}\\}_{k=0}^\\infty$ be a system of functions defined on $ [a, b] $ and orthonormal in $ L ^ 2_ \\rho = L ^ 2_\\rho ( a, b) $ with respect to the usual inner product.\nFor a given positive integer $ r $, by $\\{\\varphi_{r,k}\\}_{k=0}^\\infty$ we denote the system of functions orthonormal with respect to the Sobolev-type inner product and generated by the system $\\{\\varphi_{k}\\}_{k=0}^\\infty$.\nIn this paper, we study the question of the uniform convergence of the Fourier series by the system of functions $\\{\\varphi_{r,k}\\}_{k=0}^\\infty$ to the functions $f\\in W^r_{L^p_\\rho}$ in the case when the original system $\\{\\varphi_{k}\\}_{k=0}^\\infty$ forms a basis in the space $L^p_\\rho=L^p_\\rho(a,b)$ ($1\\le p$, $p\\neq2$).","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On uniform convergence of Fourier-Sobolev series\",\"authors\":\"T. Shakh-Emirov\",\"doi\":\"10.31029/demr.12.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\{\\\\varphi_{k}\\\\}_{k=0}^\\\\infty$ be a system of functions defined on $ [a, b] $ and orthonormal in $ L ^ 2_ \\\\rho = L ^ 2_\\\\rho ( a, b) $ with respect to the usual inner product.\\nFor a given positive integer $ r $, by $\\\\{\\\\varphi_{r,k}\\\\}_{k=0}^\\\\infty$ we denote the system of functions orthonormal with respect to the Sobolev-type inner product and generated by the system $\\\\{\\\\varphi_{k}\\\\}_{k=0}^\\\\infty$.\\nIn this paper, we study the question of the uniform convergence of the Fourier series by the system of functions $\\\\{\\\\varphi_{r,k}\\\\}_{k=0}^\\\\infty$ to the functions $f\\\\in W^r_{L^p_\\\\rho}$ in the case when the original system $\\\\{\\\\varphi_{k}\\\\}_{k=0}^\\\\infty$ forms a basis in the space $L^p_\\\\rho=L^p_\\\\rho(a,b)$ ($1\\\\le p$, $p\\\\neq2$).\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.12.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.12.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$\{\varphi_{k}\}_{k=0}^\infty$是一个定义在$ [a, b] $上的函数系统,在$ L ^ 2_ \rho = L ^ 2_\rho ( a, b) $上对通常的内积正交。对于给定的正整数$ r $,用$\{\varphi_{r,k}\}_{k=0}^\infty$表示由系统$\{\varphi_{k}\}_{k=0}^\infty$生成的与sobolev型内积正交的函数系统。本文研究了当原系统$\{\varphi_{k}\}_{k=0}^\infty$在空间$L^p_\rho=L^p_\rho(a,b)$ ($1\le p$)中构成一组基时,函数系统$\{\varphi_{r,k}\}_{k=0}^\infty$对函数$f\in W^r_{L^p_\rho}$的傅里叶级数的一致收敛问题。$p\neq2$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On uniform convergence of Fourier-Sobolev series
Let $\{\varphi_{k}\}_{k=0}^\infty$ be a system of functions defined on $ [a, b] $ and orthonormal in $ L ^ 2_ \rho = L ^ 2_\rho ( a, b) $ with respect to the usual inner product. For a given positive integer $ r $, by $\{\varphi_{r,k}\}_{k=0}^\infty$ we denote the system of functions orthonormal with respect to the Sobolev-type inner product and generated by the system $\{\varphi_{k}\}_{k=0}^\infty$. In this paper, we study the question of the uniform convergence of the Fourier series by the system of functions $\{\varphi_{r,k}\}_{k=0}^\infty$ to the functions $f\in W^r_{L^p_\rho}$ in the case when the original system $\{\varphi_{k}\}_{k=0}^\infty$ forms a basis in the space $L^p_\rho=L^p_\rho(a,b)$ ($1\le p$, $p\neq2$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信