{"title":"PolyU-CBS在FinSim-2任务中的应用:结合分布式、基于字符串和基于变换的特征在金融领域进行超词检测","authors":"Emmanuele Chersoni, Chu-Ren Huang","doi":"10.1145/3442442.3451387","DOIUrl":null,"url":null,"abstract":"In this contribution, we describe the systems presented by the PolyU CBS Team at the second Shared Task on Learning Semantic Similarities for the Financial Domain (FinSim-2), where participating teams had to identify the right hypernyms for a list of target terms from the financial domain. For this task, we ran our classification experiments with several distributional, string-based, and Transformer features. Our results show that a simple logistic regression classifier, when trained on a combination of word embeddings, semantic and string similarity metrics and BERT-derived probabilities, achieves a strong performance (above 90%) in financial hypernymy detection.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"97 7-8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PolyU-CBS at the FinSim-2 Task: Combining Distributional, String-Based and Transformers-Based Features for Hypernymy Detection in the Financial Domain\",\"authors\":\"Emmanuele Chersoni, Chu-Ren Huang\",\"doi\":\"10.1145/3442442.3451387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we describe the systems presented by the PolyU CBS Team at the second Shared Task on Learning Semantic Similarities for the Financial Domain (FinSim-2), where participating teams had to identify the right hypernyms for a list of target terms from the financial domain. For this task, we ran our classification experiments with several distributional, string-based, and Transformer features. Our results show that a simple logistic regression classifier, when trained on a combination of word embeddings, semantic and string similarity metrics and BERT-derived probabilities, achieves a strong performance (above 90%) in financial hypernymy detection.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"97 7-8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3451387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PolyU-CBS at the FinSim-2 Task: Combining Distributional, String-Based and Transformers-Based Features for Hypernymy Detection in the Financial Domain
In this contribution, we describe the systems presented by the PolyU CBS Team at the second Shared Task on Learning Semantic Similarities for the Financial Domain (FinSim-2), where participating teams had to identify the right hypernyms for a list of target terms from the financial domain. For this task, we ran our classification experiments with several distributional, string-based, and Transformer features. Our results show that a simple logistic regression classifier, when trained on a combination of word embeddings, semantic and string similarity metrics and BERT-derived probabilities, achieves a strong performance (above 90%) in financial hypernymy detection.