激波-粒子层相互作用中压实效应的数值模拟

Yaroslava E. Poroshyna, P. Utkin
{"title":"激波-粒子层相互作用中压实效应的数值模拟","authors":"Yaroslava E. Poroshyna, P. Utkin","doi":"10.30826/icpcd12b10","DOIUrl":null,"url":null,"abstract":"The work presents the results of numerical simulation of the experiment (Gelfand, B. E., et al. 1989. Archivum Combustionis) on the interaction of a shock wave (SW) with a particle layer near the impermeable wall. The mathematical model is based on the solution of Baer–Nunziato (BN) system of equations and takes into account compaction of the solid phase of particles. The numerical algorithm is based on the Godunov method with the pressure relaxation procedure for the stable computation of explicit interfacial boundaries. The shape of the pressure curve obtained on the wall under particle layer is explained from the point of view of wave processes in the layer. A quantitative comparison of the experimental and simulated pressure curves is carried out. Parametric studies of the influence of compaction law parameters on the simulation results are conducted. The simulation results are quantitatively compared with the calculations (Kutushev, A. G., and D. A. Rudakov. 1993. J. Appl. Mech. Tech. Phy.) performed using the equations of R. I. Nigmatulin. Differences in the results using two models of two-phase flow are discussed.","PeriodicalId":426460,"journal":{"name":"Detonation: Latest accomplishments","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL SIMULATION OF THE COMPACTION EFFECT DURING THE SHOCK WAVE–PARTICLE LAYER INTERACTION\",\"authors\":\"Yaroslava E. Poroshyna, P. Utkin\",\"doi\":\"10.30826/icpcd12b10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presents the results of numerical simulation of the experiment (Gelfand, B. E., et al. 1989. Archivum Combustionis) on the interaction of a shock wave (SW) with a particle layer near the impermeable wall. The mathematical model is based on the solution of Baer–Nunziato (BN) system of equations and takes into account compaction of the solid phase of particles. The numerical algorithm is based on the Godunov method with the pressure relaxation procedure for the stable computation of explicit interfacial boundaries. The shape of the pressure curve obtained on the wall under particle layer is explained from the point of view of wave processes in the layer. A quantitative comparison of the experimental and simulated pressure curves is carried out. Parametric studies of the influence of compaction law parameters on the simulation results are conducted. The simulation results are quantitatively compared with the calculations (Kutushev, A. G., and D. A. Rudakov. 1993. J. Appl. Mech. Tech. Phy.) performed using the equations of R. I. Nigmatulin. Differences in the results using two models of two-phase flow are discussed.\",\"PeriodicalId\":426460,\"journal\":{\"name\":\"Detonation: Latest accomplishments\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Detonation: Latest accomplishments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30826/icpcd12b10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detonation: Latest accomplishments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30826/icpcd12b10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了实验的数值模拟结果(Gelfand, b.e., et al. 1989)。在激波(SW)的相互作用与颗粒层附近的不透水壁。该数学模型基于Baer-Nunziato (BN)方程组的解,并考虑了颗粒固相的压实作用。数值算法基于Godunov方法,采用压力松弛法进行显式界面边界的稳定计算。从颗粒层内波动过程的角度解释了颗粒层下壁面压力曲线的形状。对实验压力曲线和模拟压力曲线进行了定量比较。对压实规律参数对模拟结果的影响进行了参数化研究。模拟结果与计算结果进行了定量比较(Kutushev, a.g., and d.a. Rudakov. 1993)。j:。动力机械。利用尼格马图林(r.i. Nigmatulin)的方程。讨论了两相流模型计算结果的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL SIMULATION OF THE COMPACTION EFFECT DURING THE SHOCK WAVE–PARTICLE LAYER INTERACTION
The work presents the results of numerical simulation of the experiment (Gelfand, B. E., et al. 1989. Archivum Combustionis) on the interaction of a shock wave (SW) with a particle layer near the impermeable wall. The mathematical model is based on the solution of Baer–Nunziato (BN) system of equations and takes into account compaction of the solid phase of particles. The numerical algorithm is based on the Godunov method with the pressure relaxation procedure for the stable computation of explicit interfacial boundaries. The shape of the pressure curve obtained on the wall under particle layer is explained from the point of view of wave processes in the layer. A quantitative comparison of the experimental and simulated pressure curves is carried out. Parametric studies of the influence of compaction law parameters on the simulation results are conducted. The simulation results are quantitatively compared with the calculations (Kutushev, A. G., and D. A. Rudakov. 1993. J. Appl. Mech. Tech. Phy.) performed using the equations of R. I. Nigmatulin. Differences in the results using two models of two-phase flow are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信