{"title":"泊松流形上完整dq模的有限定理","authors":"M. Kashiwara, P. Schapira","doi":"10.2140/tunis.2021.3.571","DOIUrl":null,"url":null,"abstract":"On a complex symplectic manifold we prove a finiteness result for the global sections of solutions of holonomic DQ-modules in two cases: (a) by assuming that there exists a Poisson compactification (b) in the algebraic case. This extends our previous results in which the symplectic manifold was compact. The main tool is a finiteness theorem for R-constructible sheaves on a real analytic manifold in a non proper situation.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A finiteness theorem for holonomic DQ-modules on Poisson manifolds\",\"authors\":\"M. Kashiwara, P. Schapira\",\"doi\":\"10.2140/tunis.2021.3.571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a complex symplectic manifold we prove a finiteness result for the global sections of solutions of holonomic DQ-modules in two cases: (a) by assuming that there exists a Poisson compactification (b) in the algebraic case. This extends our previous results in which the symplectic manifold was compact. The main tool is a finiteness theorem for R-constructible sheaves on a real analytic manifold in a non proper situation.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2021.3.571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2021.3.571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A finiteness theorem for holonomic DQ-modules on Poisson manifolds
On a complex symplectic manifold we prove a finiteness result for the global sections of solutions of holonomic DQ-modules in two cases: (a) by assuming that there exists a Poisson compactification (b) in the algebraic case. This extends our previous results in which the symplectic manifold was compact. The main tool is a finiteness theorem for R-constructible sheaves on a real analytic manifold in a non proper situation.