基于全注意力的药物相互作用提取,利用用户生成的内容

Bo Xu, Xiufeng Shi, Zhehuan Zhao, Wei Zheng, Hongfei Lin, Zhihao Yang, Jian Wang, Feng Xia
{"title":"基于全注意力的药物相互作用提取,利用用户生成的内容","authors":"Bo Xu, Xiufeng Shi, Zhehuan Zhao, Wei Zheng, Hongfei Lin, Zhihao Yang, Jian Wang, Feng Xia","doi":"10.1109/BIBM.2018.8621281","DOIUrl":null,"url":null,"abstract":"When a patient takes multiple medications simultaneously under treatment, it is vital for the doctor to comprehend all interactions between drugs in the prescription entirely. Drug drug interaction (DDI) extraction aims to obtain interactions between drugs from biomedical literature automatically. Nowadays, researchers apply artificial intelligence and natural language processing techniques to perform DDI extraction task. Existing DDI extraction methods have utilized some kinds of external resources such as biomedical databases or ontologies to offer more knowledge and improve the performance. However, these kinds of external resources are delayed because of the hardship of updating. User-generated content (UGC) is another sort of external biomedical resource which is up-to-date and can be updated rapidly. We attempt to utilize UGC resource in our deep learning DDI extraction method to provide more fresh information. We propose a DDI extraction method that merges UGC information and contextual information together by a new attention mechanism called full-attention. We conduct a series of experiments on the DDI 2013 Evaluation dataset to evaluate our method. UGC-DDI outperforms the other state-of-the-art methods and achieves a competitive F-score of 0.712.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"166 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Full-attention Based Drug Drug Interaction Extraction Exploiting User-generated Content\",\"authors\":\"Bo Xu, Xiufeng Shi, Zhehuan Zhao, Wei Zheng, Hongfei Lin, Zhihao Yang, Jian Wang, Feng Xia\",\"doi\":\"10.1109/BIBM.2018.8621281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a patient takes multiple medications simultaneously under treatment, it is vital for the doctor to comprehend all interactions between drugs in the prescription entirely. Drug drug interaction (DDI) extraction aims to obtain interactions between drugs from biomedical literature automatically. Nowadays, researchers apply artificial intelligence and natural language processing techniques to perform DDI extraction task. Existing DDI extraction methods have utilized some kinds of external resources such as biomedical databases or ontologies to offer more knowledge and improve the performance. However, these kinds of external resources are delayed because of the hardship of updating. User-generated content (UGC) is another sort of external biomedical resource which is up-to-date and can be updated rapidly. We attempt to utilize UGC resource in our deep learning DDI extraction method to provide more fresh information. We propose a DDI extraction method that merges UGC information and contextual information together by a new attention mechanism called full-attention. We conduct a series of experiments on the DDI 2013 Evaluation dataset to evaluate our method. UGC-DDI outperforms the other state-of-the-art methods and achieves a competitive F-score of 0.712.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"166 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

当病人同时服用多种药物治疗时,医生完全了解处方中药物之间的相互作用是至关重要的。药物相互作用(DDI)提取的目的是从生物医学文献中自动获取药物之间的相互作用。目前,研究人员利用人工智能和自然语言处理技术来完成DDI提取任务。现有的DDI提取方法利用生物医学数据库或本体等外部资源来提供更多的知识和提高性能。然而,由于更新困难,这些外部资源被延迟。用户生成内容(UGC)是另一种外部生物医学资源,它是最新的,可以快速更新。我们尝试在我们的深度学习DDI提取方法中利用UGC资源,提供更多的新鲜信息。我们提出了一种DDI提取方法,通过一种新的注意力机制,即全注意力,将UGC信息和上下文信息合并在一起。我们在DDI 2013评估数据集上进行了一系列实验来评估我们的方法。UGC-DDI优于其他最先进的方法,达到了0.712的竞争f分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-attention Based Drug Drug Interaction Extraction Exploiting User-generated Content
When a patient takes multiple medications simultaneously under treatment, it is vital for the doctor to comprehend all interactions between drugs in the prescription entirely. Drug drug interaction (DDI) extraction aims to obtain interactions between drugs from biomedical literature automatically. Nowadays, researchers apply artificial intelligence and natural language processing techniques to perform DDI extraction task. Existing DDI extraction methods have utilized some kinds of external resources such as biomedical databases or ontologies to offer more knowledge and improve the performance. However, these kinds of external resources are delayed because of the hardship of updating. User-generated content (UGC) is another sort of external biomedical resource which is up-to-date and can be updated rapidly. We attempt to utilize UGC resource in our deep learning DDI extraction method to provide more fresh information. We propose a DDI extraction method that merges UGC information and contextual information together by a new attention mechanism called full-attention. We conduct a series of experiments on the DDI 2013 Evaluation dataset to evaluate our method. UGC-DDI outperforms the other state-of-the-art methods and achieves a competitive F-score of 0.712.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信