箭头-雅各布布序列

Yesım Akuzum, O. Deveci
{"title":"箭头-雅各布布序列","authors":"Yesım Akuzum, O. Deveci","doi":"10.20948/mathmontis-2021-51-3","DOIUrl":null,"url":null,"abstract":"In the present investigation, we define the arrowhead-Jacobsthal sequence by the arrowhead matrix defined with the help of the characteristic polynomial of the generalized order-k Jacobsthal numbers. Next, we derive various properties of the arrowhead-Jacobsthal sequence by using its generating matrix. Also, we give connections between Fibonacci, Jacobsthal, Pell and arrowhead-Jacobsthal numbers.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"74 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The arrowhead-Jacobsthal sequence\",\"authors\":\"Yesım Akuzum, O. Deveci\",\"doi\":\"10.20948/mathmontis-2021-51-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present investigation, we define the arrowhead-Jacobsthal sequence by the arrowhead matrix defined with the help of the characteristic polynomial of the generalized order-k Jacobsthal numbers. Next, we derive various properties of the arrowhead-Jacobsthal sequence by using its generating matrix. Also, we give connections between Fibonacci, Jacobsthal, Pell and arrowhead-Jacobsthal numbers.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"74 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2021-51-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2021-51-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用广义k阶jacobthal数的特征多项式所定义的箭头矩阵来定义箭头- jacobthal序列。接下来,我们利用箭头-雅各布布序列的生成矩阵推导出它的各种性质。同时,我们给出了斐波那契数、雅各布数、佩尔数和箭头雅各布数之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The arrowhead-Jacobsthal sequence
In the present investigation, we define the arrowhead-Jacobsthal sequence by the arrowhead matrix defined with the help of the characteristic polynomial of the generalized order-k Jacobsthal numbers. Next, we derive various properties of the arrowhead-Jacobsthal sequence by using its generating matrix. Also, we give connections between Fibonacci, Jacobsthal, Pell and arrowhead-Jacobsthal numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信