广义四速布罗德井模型的稳定解

P.L. Defoou, K.K.L. Sossou, A. D'almeida
{"title":"广义四速布罗德井模型的稳定解","authors":"P.L. Defoou, K.K.L. Sossou, A. D'almeida","doi":"10.37418/amsj.12.5.2","DOIUrl":null,"url":null,"abstract":"Existence and boundedness is proved for the solutions of boundary value problems resulting from the modelling of a flow in a rectangular box by the four velocity Broadwell model. The influence of the orientation of the model in relation to the sides of the rectangle on the form of the boundary value problem is analysed. The uniqueness of the maxwellian solutions is proved. The non uniqueness of the non maxwellian solutions is established by building different exact non maxwellian solutions for the same macroscopic density.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"871 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE STEADY SOLUTIONS OF THE GENERAL FOUR VELOCITY BROADWELL MODEL\",\"authors\":\"P.L. Defoou, K.K.L. Sossou, A. D'almeida\",\"doi\":\"10.37418/amsj.12.5.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existence and boundedness is proved for the solutions of boundary value problems resulting from the modelling of a flow in a rectangular box by the four velocity Broadwell model. The influence of the orientation of the model in relation to the sides of the rectangle on the form of the boundary value problem is analysed. The uniqueness of the maxwellian solutions is proved. The non uniqueness of the non maxwellian solutions is established by building different exact non maxwellian solutions for the same macroscopic density.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"871 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.5.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.5.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了用四速度Broadwell模型模拟矩形箱内流动所引起的边值问题解的存在性和有界性。分析了模型的方向与矩形边的关系对边值问题形式的影响。证明了麦克斯韦方程组解的唯一性。通过对相同宏观密度建立不同的精确非麦克斯韦解,建立了非麦克斯韦解的非唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE STEADY SOLUTIONS OF THE GENERAL FOUR VELOCITY BROADWELL MODEL
Existence and boundedness is proved for the solutions of boundary value problems resulting from the modelling of a flow in a rectangular box by the four velocity Broadwell model. The influence of the orientation of the model in relation to the sides of the rectangle on the form of the boundary value problem is analysed. The uniqueness of the maxwellian solutions is proved. The non uniqueness of the non maxwellian solutions is established by building different exact non maxwellian solutions for the same macroscopic density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信