基于概率幅值分布的局部二值模式人脸检测算法

Wisam H. Alobaidi, Israa T. Aziz, Thakwan A. Jawad, Firas M. F. Flaih, Abdulrahman T. Azeez
{"title":"基于概率幅值分布的局部二值模式人脸检测算法","authors":"Wisam H. Alobaidi, Israa T. Aziz, Thakwan A. Jawad, Firas M. F. Flaih, Abdulrahman T. Azeez","doi":"10.1109/ISDFS.2018.8355319","DOIUrl":null,"url":null,"abstract":"Face detection and recognition are challenging research topics in the field of robotic vision. Numerous algorithms have been proposed to solve several problems related to changes in environment and lighting conditions. In our research, we introduce a new algorithm for face detection. The proposed method uses the well-known local binary patterns(LBP) algorithm and K-means clustering for face segmentation and maximum likelihood to classify output data. This method can be summarized as a process of detecting and recognizing faces on the basis of the distribution of feature vector amplitudes on six levels, that is, three for positive vector amplitudes and three for negative amplitudes. Detection is conducted by classifying distribution values and deciding whether or not these values compose a face.","PeriodicalId":154279,"journal":{"name":"2018 6th International Symposium on Digital Forensic and Security (ISDFS)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Face detection based on probability of amplitude distribution of local binary patterns algorithm\",\"authors\":\"Wisam H. Alobaidi, Israa T. Aziz, Thakwan A. Jawad, Firas M. F. Flaih, Abdulrahman T. Azeez\",\"doi\":\"10.1109/ISDFS.2018.8355319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection and recognition are challenging research topics in the field of robotic vision. Numerous algorithms have been proposed to solve several problems related to changes in environment and lighting conditions. In our research, we introduce a new algorithm for face detection. The proposed method uses the well-known local binary patterns(LBP) algorithm and K-means clustering for face segmentation and maximum likelihood to classify output data. This method can be summarized as a process of detecting and recognizing faces on the basis of the distribution of feature vector amplitudes on six levels, that is, three for positive vector amplitudes and three for negative amplitudes. Detection is conducted by classifying distribution values and deciding whether or not these values compose a face.\",\"PeriodicalId\":154279,\"journal\":{\"name\":\"2018 6th International Symposium on Digital Forensic and Security (ISDFS)\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Symposium on Digital Forensic and Security (ISDFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDFS.2018.8355319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Digital Forensic and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS.2018.8355319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人脸检测与识别是机器人视觉领域中具有挑战性的研究课题。为了解决与环境和光照条件变化相关的一些问题,已经提出了许多算法。在我们的研究中,我们引入了一种新的人脸检测算法。该方法采用著名的局部二值模式(LBP)算法和K-means聚类进行人脸分割,并对输出数据进行最大似然分类。该方法可以概括为基于特征矢量幅值在六个层次上的分布,即三个为正矢量幅值,三个为负矢量幅值,对人脸进行检测和识别的过程。检测是通过对分布值进行分类并判断这些值是否构成人脸来进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face detection based on probability of amplitude distribution of local binary patterns algorithm
Face detection and recognition are challenging research topics in the field of robotic vision. Numerous algorithms have been proposed to solve several problems related to changes in environment and lighting conditions. In our research, we introduce a new algorithm for face detection. The proposed method uses the well-known local binary patterns(LBP) algorithm and K-means clustering for face segmentation and maximum likelihood to classify output data. This method can be summarized as a process of detecting and recognizing faces on the basis of the distribution of feature vector amplitudes on six levels, that is, three for positive vector amplitudes and three for negative amplitudes. Detection is conducted by classifying distribution values and deciding whether or not these values compose a face.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信