实现最小基因调控网络的最优权衡适应功能

Xiaona Huang, Jiaqi Li, Zhirong Zhang
{"title":"实现最小基因调控网络的最优权衡适应功能","authors":"Xiaona Huang, Jiaqi Li, Zhirong Zhang","doi":"10.1109/ICBCB52223.2021.9459221","DOIUrl":null,"url":null,"abstract":"Adaptation functionality is an essential property for gene regulatory network (GRN). Understanding the relationship between optimal tradeoff adaptation performance and GRN parameters remains an open question. In this paper, a minimal three-node GRN with 12 parameters is modeled by the Michaelis-Menten rate equations. The NSGA-III algorithm is used to find the ‘best’ parameter sets as many as possible, which make GRN achieve optimal tradeoff adaptation: high sensitivity, high precision, short peak time and short settle down time. Further statistical analysis is performed to obtain reliable rules of the ‘best’ parameter sets. The results show that 11 out of 12 GRN parameters have preferred value. The proposed methodology can provide the guidance to design GRN with optimal tradeoff adaptation, or with other biological functionalities.","PeriodicalId":178168,"journal":{"name":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Optimal Tradeoff Adaptation Functionality for the Minimal Gene Regulatory Network\",\"authors\":\"Xiaona Huang, Jiaqi Li, Zhirong Zhang\",\"doi\":\"10.1109/ICBCB52223.2021.9459221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptation functionality is an essential property for gene regulatory network (GRN). Understanding the relationship between optimal tradeoff adaptation performance and GRN parameters remains an open question. In this paper, a minimal three-node GRN with 12 parameters is modeled by the Michaelis-Menten rate equations. The NSGA-III algorithm is used to find the ‘best’ parameter sets as many as possible, which make GRN achieve optimal tradeoff adaptation: high sensitivity, high precision, short peak time and short settle down time. Further statistical analysis is performed to obtain reliable rules of the ‘best’ parameter sets. The results show that 11 out of 12 GRN parameters have preferred value. The proposed methodology can provide the guidance to design GRN with optimal tradeoff adaptation, or with other biological functionalities.\",\"PeriodicalId\":178168,\"journal\":{\"name\":\"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBCB52223.2021.9459221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB52223.2021.9459221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

适应功能是基因调控网络(GRN)的基本特性。理解最优权衡自适应性能与GRN参数之间的关系仍然是一个悬而未决的问题。本文利用Michaelis-Menten速率方程,建立了具有12个参数的最小三节点GRN模型。采用NSGA-III算法寻找尽可能多的“最佳”参数集,使GRN达到最优权衡适应:高灵敏度、高精度、短峰值时间和短稳定时间。进一步的统计分析得到了“最佳”参数集的可靠规则。结果表明,12个GRN参数中有11个具有优选值。所提出的方法可以为设计具有最佳权衡适应或其他生物功能的GRN提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving Optimal Tradeoff Adaptation Functionality for the Minimal Gene Regulatory Network
Adaptation functionality is an essential property for gene regulatory network (GRN). Understanding the relationship between optimal tradeoff adaptation performance and GRN parameters remains an open question. In this paper, a minimal three-node GRN with 12 parameters is modeled by the Michaelis-Menten rate equations. The NSGA-III algorithm is used to find the ‘best’ parameter sets as many as possible, which make GRN achieve optimal tradeoff adaptation: high sensitivity, high precision, short peak time and short settle down time. Further statistical analysis is performed to obtain reliable rules of the ‘best’ parameter sets. The results show that 11 out of 12 GRN parameters have preferred value. The proposed methodology can provide the guidance to design GRN with optimal tradeoff adaptation, or with other biological functionalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信