一种结合用户统计特征和项目属性的有效方案,用于解决数据稀疏性和冷启动问题

Noor Ifada, M. K. Sophan, Irvan Syachrudin, Selgy Zahranida Sugiharto
{"title":"一种结合用户统计特征和项目属性的有效方案,用于解决数据稀疏性和冷启动问题","authors":"Noor Ifada, M. K. Sophan, Irvan Syachrudin, Selgy Zahranida Sugiharto","doi":"10.1109/ICICoS48119.2019.8982394","DOIUrl":null,"url":null,"abstract":"This paper investigates several schemes to combine the user demographic information and item attribute data that respectively beneficial to solve the data sparsity and cold-start problems in recommendation systems. We propose four schemes that are varied based on how the combination of the two data can be constructed. To test and evaluate the concept, we implement the schemes on a probabilistic-attribute method adapted to suit our attribute model. Compared to the benchmark methods, experiment results show that our approach is superior in solving the data sparsity and cold-start problems. In general, the scheme that combines the item attribute data with a partial user demographic information performs better than the other variations of the combined-attribute scheme. This finding confirms that combining both the user demographic information, though not all of them, and the item attribute can efficiently solve the data sparsity and cold-start problems.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Efficient Scheme to Combine the User Demographics and Item Attribute for Solving Data Sparsity and Cold-start Problems\",\"authors\":\"Noor Ifada, M. K. Sophan, Irvan Syachrudin, Selgy Zahranida Sugiharto\",\"doi\":\"10.1109/ICICoS48119.2019.8982394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates several schemes to combine the user demographic information and item attribute data that respectively beneficial to solve the data sparsity and cold-start problems in recommendation systems. We propose four schemes that are varied based on how the combination of the two data can be constructed. To test and evaluate the concept, we implement the schemes on a probabilistic-attribute method adapted to suit our attribute model. Compared to the benchmark methods, experiment results show that our approach is superior in solving the data sparsity and cold-start problems. In general, the scheme that combines the item attribute data with a partial user demographic information performs better than the other variations of the combined-attribute scheme. This finding confirms that combining both the user demographic information, though not all of them, and the item attribute can efficiently solve the data sparsity and cold-start problems.\",\"PeriodicalId\":105407,\"journal\":{\"name\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICoS48119.2019.8982394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了几种将用户人口统计信息和商品属性数据相结合的方案,分别有利于解决推荐系统中的数据稀疏性和冷启动问题。我们提出了四种方案,这些方案根据如何构建两个数据的组合而变化。为了测试和评估这个概念,我们在适合我们的属性模型的概率属性方法上实现了这些方案。实验结果表明,该方法在解决数据稀疏性和冷启动问题方面优于基准方法。通常,将项目属性数据与部分用户人口统计信息相结合的方案比组合属性方案的其他变体执行得更好。这一发现证实了将用户人口统计信息(尽管不是全部)与项目属性结合起来可以有效地解决数据稀疏和冷启动问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Scheme to Combine the User Demographics and Item Attribute for Solving Data Sparsity and Cold-start Problems
This paper investigates several schemes to combine the user demographic information and item attribute data that respectively beneficial to solve the data sparsity and cold-start problems in recommendation systems. We propose four schemes that are varied based on how the combination of the two data can be constructed. To test and evaluate the concept, we implement the schemes on a probabilistic-attribute method adapted to suit our attribute model. Compared to the benchmark methods, experiment results show that our approach is superior in solving the data sparsity and cold-start problems. In general, the scheme that combines the item attribute data with a partial user demographic information performs better than the other variations of the combined-attribute scheme. This finding confirms that combining both the user demographic information, though not all of them, and the item attribute can efficiently solve the data sparsity and cold-start problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信