基于时间序列决策树的DGA机器人检测

Anael Bonneton, D. Migault, S. Sénécal, Nizar Kheir
{"title":"基于时间序列决策树的DGA机器人检测","authors":"Anael Bonneton, D. Migault, S. Sénécal, Nizar Kheir","doi":"10.1109/BADGERS.2015.016","DOIUrl":null,"url":null,"abstract":"This paper introduces a behavioral model for botnet detection that leverages the Domain Name System (DNS) traffic in large Internet Service Provider (ISP) networks. More particularly, we are interested in botnets that locate and connect to their command and control servers thanks to Domain Generation Algorithms (DGAs). We demonstrate that the DNS traffic generated by hosts belonging to a DGA botnet exhibits discriminative temporal patterns. We show how to build decision tree classifiers to recognize these patterns in very little computation time. The main contribution of this paper is to consider whole time series to represent the temporal behavior of hosts instead of aggregated values computed from the time series. Our experiments are carried out on real world DNS traffic collected from a large ISP.","PeriodicalId":150208,"journal":{"name":"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DGA Bot Detection with Time Series Decision Trees\",\"authors\":\"Anael Bonneton, D. Migault, S. Sénécal, Nizar Kheir\",\"doi\":\"10.1109/BADGERS.2015.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a behavioral model for botnet detection that leverages the Domain Name System (DNS) traffic in large Internet Service Provider (ISP) networks. More particularly, we are interested in botnets that locate and connect to their command and control servers thanks to Domain Generation Algorithms (DGAs). We demonstrate that the DNS traffic generated by hosts belonging to a DGA botnet exhibits discriminative temporal patterns. We show how to build decision tree classifiers to recognize these patterns in very little computation time. The main contribution of this paper is to consider whole time series to represent the temporal behavior of hosts instead of aggregated values computed from the time series. Our experiments are carried out on real world DNS traffic collected from a large ISP.\",\"PeriodicalId\":150208,\"journal\":{\"name\":\"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BADGERS.2015.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BADGERS.2015.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了一种利用大型互联网服务提供商(ISP)网络中的域名系统(DNS)流量进行僵尸网络检测的行为模型。更具体地说,我们对通过域生成算法(DGAs)定位并连接到其命令和控制服务器的僵尸网络感兴趣。我们证明了由属于DGA僵尸网络的主机产生的DNS流量具有区别性的时间模式。我们展示了如何构建决策树分类器,以便在很少的计算时间内识别这些模式。本文的主要贡献是考虑整个时间序列来表示主机的时间行为,而不是从时间序列中计算汇总值。我们的实验是在从大型ISP收集的真实世界DNS流量上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DGA Bot Detection with Time Series Decision Trees
This paper introduces a behavioral model for botnet detection that leverages the Domain Name System (DNS) traffic in large Internet Service Provider (ISP) networks. More particularly, we are interested in botnets that locate and connect to their command and control servers thanks to Domain Generation Algorithms (DGAs). We demonstrate that the DNS traffic generated by hosts belonging to a DGA botnet exhibits discriminative temporal patterns. We show how to build decision tree classifiers to recognize these patterns in very little computation time. The main contribution of this paper is to consider whole time series to represent the temporal behavior of hosts instead of aggregated values computed from the time series. Our experiments are carried out on real world DNS traffic collected from a large ISP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信