信号数量的较低置信限

Pinyuen Chen, M. Wicks
{"title":"信号数量的较低置信限","authors":"Pinyuen Chen, M. Wicks","doi":"10.1109/NRC.2002.999744","DOIUrl":null,"url":null,"abstract":"We propose a multi-step procedure for constructing a lower confidence limit for the number of signals present. We derive the probability of a correct estimation, P(CE), and the least favorable configuration (LFC) for our procedure. Under LFC, the P(CE) attains its minimum over the parameter space of all eigenvalues. Therefore a minimum sample size can be determined in order to implement our procedure with a guaranteed probability requirement.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A lower confidence limit for the number of signals\",\"authors\":\"Pinyuen Chen, M. Wicks\",\"doi\":\"10.1109/NRC.2002.999744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multi-step procedure for constructing a lower confidence limit for the number of signals present. We derive the probability of a correct estimation, P(CE), and the least favorable configuration (LFC) for our procedure. Under LFC, the P(CE) attains its minimum over the parameter space of all eigenvalues. Therefore a minimum sample size can be determined in order to implement our procedure with a guaranteed probability requirement.\",\"PeriodicalId\":448055,\"journal\":{\"name\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2002.999744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个多步骤的程序来构建一个较低的置信限的信号的数量。我们推导出正确估计的概率P(CE)和最不利配置(LFC)。在LFC下,P(CE)在所有特征值的参数空间上达到最小值。因此,可以确定最小样本量,以便在保证概率要求的情况下实现我们的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower confidence limit for the number of signals
We propose a multi-step procedure for constructing a lower confidence limit for the number of signals present. We derive the probability of a correct estimation, P(CE), and the least favorable configuration (LFC) for our procedure. Under LFC, the P(CE) attains its minimum over the parameter space of all eigenvalues. Therefore a minimum sample size can be determined in order to implement our procedure with a guaranteed probability requirement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信