{"title":"信号数量的较低置信限","authors":"Pinyuen Chen, M. Wicks","doi":"10.1109/NRC.2002.999744","DOIUrl":null,"url":null,"abstract":"We propose a multi-step procedure for constructing a lower confidence limit for the number of signals present. We derive the probability of a correct estimation, P(CE), and the least favorable configuration (LFC) for our procedure. Under LFC, the P(CE) attains its minimum over the parameter space of all eigenvalues. Therefore a minimum sample size can be determined in order to implement our procedure with a guaranteed probability requirement.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A lower confidence limit for the number of signals\",\"authors\":\"Pinyuen Chen, M. Wicks\",\"doi\":\"10.1109/NRC.2002.999744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multi-step procedure for constructing a lower confidence limit for the number of signals present. We derive the probability of a correct estimation, P(CE), and the least favorable configuration (LFC) for our procedure. Under LFC, the P(CE) attains its minimum over the parameter space of all eigenvalues. Therefore a minimum sample size can be determined in order to implement our procedure with a guaranteed probability requirement.\",\"PeriodicalId\":448055,\"journal\":{\"name\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2002.999744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A lower confidence limit for the number of signals
We propose a multi-step procedure for constructing a lower confidence limit for the number of signals present. We derive the probability of a correct estimation, P(CE), and the least favorable configuration (LFC) for our procedure. Under LFC, the P(CE) attains its minimum over the parameter space of all eigenvalues. Therefore a minimum sample size can be determined in order to implement our procedure with a guaranteed probability requirement.