广义低秩奇偶校验码

Ermes Franch, P. Gaborit, Chunlei Li
{"title":"广义低秩奇偶校验码","authors":"Ermes Franch, P. Gaborit, Chunlei Li","doi":"10.1109/ITW55543.2023.10160243","DOIUrl":null,"url":null,"abstract":"In this work we propose a family of ${\\mathbb{F}_q}$-linear lowrank parity check (LRPC) codes based on a bilinear product over $\\mathbb{F}_q^m$ defined by a generic 3-tensor over ${\\mathbb{F}_q}$. A particular choice of this tensor corresponds to the classical ${\\mathbb{F}_{{q^m}}}$-linear LRPC codes; and other tensors yield ${\\mathbb{F}_q}$-linear codes, which, with some caveats, can be efficiently decoded with the same idea of decoding LRPC codes. The proposed codes contribute to the diversity of rank metric codes for cryptographic applications, particularly for the cases where attacks utilize ${\\mathbb{F}_{{q^m}}}$-linearity to reduce decoding complexity.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized low rank parity check codes\",\"authors\":\"Ermes Franch, P. Gaborit, Chunlei Li\",\"doi\":\"10.1109/ITW55543.2023.10160243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a family of ${\\\\mathbb{F}_q}$-linear lowrank parity check (LRPC) codes based on a bilinear product over $\\\\mathbb{F}_q^m$ defined by a generic 3-tensor over ${\\\\mathbb{F}_q}$. A particular choice of this tensor corresponds to the classical ${\\\\mathbb{F}_{{q^m}}}$-linear LRPC codes; and other tensors yield ${\\\\mathbb{F}_q}$-linear codes, which, with some caveats, can be efficiently decoded with the same idea of decoding LRPC codes. The proposed codes contribute to the diversity of rank metric codes for cryptographic applications, particularly for the cases where attacks utilize ${\\\\mathbb{F}_{{q^m}}}$-linearity to reduce decoding complexity.\",\"PeriodicalId\":439800,\"journal\":{\"name\":\"2023 IEEE Information Theory Workshop (ITW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW55543.2023.10160243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10160243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一个基于${\mathbb{F}_q}$上的双线性积的${\mathbb{F}_q}$-线性低秩奇偶校验(LRPC)码族,它是由${\mathbb{F}_q}$上的一个泛型3张量定义的。这个张量的一个特定选择对应于经典的${\mathbb{F}_{{q^m}} $-线性LRPC代码;和其他张量产生${\mathbb{F}_q}$-线性代码,有一些注意事项,可以用解码LRPC代码的相同思想有效地解码。所提出的代码有助于密码学应用程序的等级度量代码的多样性,特别是在攻击利用${\mathbb{F}_{{q^m}} $-线性来降低解码复杂性的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized low rank parity check codes
In this work we propose a family of ${\mathbb{F}_q}$-linear lowrank parity check (LRPC) codes based on a bilinear product over $\mathbb{F}_q^m$ defined by a generic 3-tensor over ${\mathbb{F}_q}$. A particular choice of this tensor corresponds to the classical ${\mathbb{F}_{{q^m}}}$-linear LRPC codes; and other tensors yield ${\mathbb{F}_q}$-linear codes, which, with some caveats, can be efficiently decoded with the same idea of decoding LRPC codes. The proposed codes contribute to the diversity of rank metric codes for cryptographic applications, particularly for the cases where attacks utilize ${\mathbb{F}_{{q^m}}}$-linearity to reduce decoding complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信