Hormozd Gahvari, W. Gropp, K. E. Jordan, M. Schulz, U. Yang
{"title":"代数多网格解算器中数据移动的系统约简","authors":"Hormozd Gahvari, W. Gropp, K. E. Jordan, M. Schulz, U. Yang","doi":"10.1109/IPDPSW.2013.164","DOIUrl":null,"url":null,"abstract":"Algebraic Multigrid (AMG) solvers find wide use in scientific simulation codes. Their ideal computational complexity makes them especially attractive for solving large problems on parallel machines. However, they also involve a substantial amount of data movement, posing challenges to performance and scalability. In this paper, we present an algorithm that provides a systematic means of reducing data movement in AMG. The algorithm operates by gathering and redistributing the problem data to reduce the need to move it on the communication-intensive coarse grid portion of AMG. The data is gathered in a way that ensures data locality by keeping data movement confined to specific regions of the machine. Any decision to gather data is made systematically through the means of a performance model. This approach results in substantial speedups on a multicore cluster when using AMG to solve a variety of test problems.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Systematic Reduction of Data Movement in Algebraic Multigrid Solvers\",\"authors\":\"Hormozd Gahvari, W. Gropp, K. E. Jordan, M. Schulz, U. Yang\",\"doi\":\"10.1109/IPDPSW.2013.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebraic Multigrid (AMG) solvers find wide use in scientific simulation codes. Their ideal computational complexity makes them especially attractive for solving large problems on parallel machines. However, they also involve a substantial amount of data movement, posing challenges to performance and scalability. In this paper, we present an algorithm that provides a systematic means of reducing data movement in AMG. The algorithm operates by gathering and redistributing the problem data to reduce the need to move it on the communication-intensive coarse grid portion of AMG. The data is gathered in a way that ensures data locality by keeping data movement confined to specific regions of the machine. Any decision to gather data is made systematically through the means of a performance model. This approach results in substantial speedups on a multicore cluster when using AMG to solve a variety of test problems.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systematic Reduction of Data Movement in Algebraic Multigrid Solvers
Algebraic Multigrid (AMG) solvers find wide use in scientific simulation codes. Their ideal computational complexity makes them especially attractive for solving large problems on parallel machines. However, they also involve a substantial amount of data movement, posing challenges to performance and scalability. In this paper, we present an algorithm that provides a systematic means of reducing data movement in AMG. The algorithm operates by gathering and redistributing the problem data to reduce the need to move it on the communication-intensive coarse grid portion of AMG. The data is gathered in a way that ensures data locality by keeping data movement confined to specific regions of the machine. Any decision to gather data is made systematically through the means of a performance model. This approach results in substantial speedups on a multicore cluster when using AMG to solve a variety of test problems.