完整的可解释的机器学习在二维与内联坐标

B. Kovalerchuk, Hoang Phan
{"title":"完整的可解释的机器学习在二维与内联坐标","authors":"B. Kovalerchuk, Hoang Phan","doi":"10.1109/IV53921.2021.00038","DOIUrl":null,"url":null,"abstract":"This paper proposed a new methodology for machine learning in 2-dimensional space (2-D ML) in inline coordinates. It is a full machine learning approach that does not require to deal with n-dimensional data in n-dimensional space. It allows discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D. Specifically, it can be done with the inline based coordinates in different modifications, including static and dynamic ones. The classification and regression algorithms based on these inline coordinates were introduced. A successful case study based on a benchmark data demonstrated the feasibility of the approach. This approach helps to consolidate further a whole new area of full 2-D machine learning as a promising ML methodology. It has advantages of abilities to involve actively the end-users into the discovering of models and their justification. Another advantage is providing interpretable ML models.","PeriodicalId":380260,"journal":{"name":"2021 25th International Conference Information Visualisation (IV)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Full interpretable machine learning in 2D with inline coordinates\",\"authors\":\"B. Kovalerchuk, Hoang Phan\",\"doi\":\"10.1109/IV53921.2021.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a new methodology for machine learning in 2-dimensional space (2-D ML) in inline coordinates. It is a full machine learning approach that does not require to deal with n-dimensional data in n-dimensional space. It allows discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D. Specifically, it can be done with the inline based coordinates in different modifications, including static and dynamic ones. The classification and regression algorithms based on these inline coordinates were introduced. A successful case study based on a benchmark data demonstrated the feasibility of the approach. This approach helps to consolidate further a whole new area of full 2-D machine learning as a promising ML methodology. It has advantages of abilities to involve actively the end-users into the discovering of models and their justification. Another advantage is providing interpretable ML models.\",\"PeriodicalId\":380260,\"journal\":{\"name\":\"2021 25th International Conference Information Visualisation (IV)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 25th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV53921.2021.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV53921.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于内联坐标的二维空间机器学习方法。这是一种完整的机器学习方法,不需要在n维空间中处理n维数据。它允许在二维空间中发现n-D模式,而不会使用二维n-D数据的图形表示丢失n-D信息。具体来说,它可以在不同的修改中使用基于内联的坐标来完成,包括静态和动态的。介绍了基于这些内联坐标的分类和回归算法。基于基准数据的成功案例研究证明了该方法的可行性。这种方法有助于进一步巩固全二维机器学习作为一种有前途的机器学习方法的全新领域。它的优点是能够使最终用户积极参与模型的发现和证明。另一个优点是提供可解释的ML模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full interpretable machine learning in 2D with inline coordinates
This paper proposed a new methodology for machine learning in 2-dimensional space (2-D ML) in inline coordinates. It is a full machine learning approach that does not require to deal with n-dimensional data in n-dimensional space. It allows discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D. Specifically, it can be done with the inline based coordinates in different modifications, including static and dynamic ones. The classification and regression algorithms based on these inline coordinates were introduced. A successful case study based on a benchmark data demonstrated the feasibility of the approach. This approach helps to consolidate further a whole new area of full 2-D machine learning as a promising ML methodology. It has advantages of abilities to involve actively the end-users into the discovering of models and their justification. Another advantage is providing interpretable ML models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信