{"title":"完整的可解释的机器学习在二维与内联坐标","authors":"B. Kovalerchuk, Hoang Phan","doi":"10.1109/IV53921.2021.00038","DOIUrl":null,"url":null,"abstract":"This paper proposed a new methodology for machine learning in 2-dimensional space (2-D ML) in inline coordinates. It is a full machine learning approach that does not require to deal with n-dimensional data in n-dimensional space. It allows discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D. Specifically, it can be done with the inline based coordinates in different modifications, including static and dynamic ones. The classification and regression algorithms based on these inline coordinates were introduced. A successful case study based on a benchmark data demonstrated the feasibility of the approach. This approach helps to consolidate further a whole new area of full 2-D machine learning as a promising ML methodology. It has advantages of abilities to involve actively the end-users into the discovering of models and their justification. Another advantage is providing interpretable ML models.","PeriodicalId":380260,"journal":{"name":"2021 25th International Conference Information Visualisation (IV)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Full interpretable machine learning in 2D with inline coordinates\",\"authors\":\"B. Kovalerchuk, Hoang Phan\",\"doi\":\"10.1109/IV53921.2021.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a new methodology for machine learning in 2-dimensional space (2-D ML) in inline coordinates. It is a full machine learning approach that does not require to deal with n-dimensional data in n-dimensional space. It allows discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D. Specifically, it can be done with the inline based coordinates in different modifications, including static and dynamic ones. The classification and regression algorithms based on these inline coordinates were introduced. A successful case study based on a benchmark data demonstrated the feasibility of the approach. This approach helps to consolidate further a whole new area of full 2-D machine learning as a promising ML methodology. It has advantages of abilities to involve actively the end-users into the discovering of models and their justification. Another advantage is providing interpretable ML models.\",\"PeriodicalId\":380260,\"journal\":{\"name\":\"2021 25th International Conference Information Visualisation (IV)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 25th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV53921.2021.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV53921.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full interpretable machine learning in 2D with inline coordinates
This paper proposed a new methodology for machine learning in 2-dimensional space (2-D ML) in inline coordinates. It is a full machine learning approach that does not require to deal with n-dimensional data in n-dimensional space. It allows discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D. Specifically, it can be done with the inline based coordinates in different modifications, including static and dynamic ones. The classification and regression algorithms based on these inline coordinates were introduced. A successful case study based on a benchmark data demonstrated the feasibility of the approach. This approach helps to consolidate further a whole new area of full 2-D machine learning as a promising ML methodology. It has advantages of abilities to involve actively the end-users into the discovering of models and their justification. Another advantage is providing interpretable ML models.