n-配对对热点数据遗传算法聚类性能的影响

R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, Sunardi
{"title":"n-配对对热点数据遗传算法聚类性能的影响","authors":"R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, Sunardi","doi":"10.1109/COMNETSAT56033.2022.9994400","DOIUrl":null,"url":null,"abstract":"This study aims to explain the effect of variations in the number of individuals mated with father (n-mating) on the performance of Genetic Algorithm Polygamy (GAP) clustering. GAP clustering is clustering method based genetic algorithm. The steps of this method are same as GA clustering steps, but the crossover process is done with polygamy. One selected father is mated with more than one mother. We evaluate the performance of GA-based clustering for hotspot data with three clustering evaluations, namely Sum Square Error, Davies-Bouldin Index, and Silhouette Coefficient. Based on experimental result, GA Polygamy clustering outperforms GA clustering based on Sum Square Error (SSE) evaluation and Silhouette Coefficient (SC) evaluation. The n-mating in the crossover process of GAP clustering affects GAP clustering performance also performance of time to convergence of GAP clustering.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"n-Mating Effect on Genetic Algorithm-Based Clustering Performance for Hotspots Data\",\"authors\":\"R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, Sunardi\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to explain the effect of variations in the number of individuals mated with father (n-mating) on the performance of Genetic Algorithm Polygamy (GAP) clustering. GAP clustering is clustering method based genetic algorithm. The steps of this method are same as GA clustering steps, but the crossover process is done with polygamy. One selected father is mated with more than one mother. We evaluate the performance of GA-based clustering for hotspot data with three clustering evaluations, namely Sum Square Error, Davies-Bouldin Index, and Silhouette Coefficient. Based on experimental result, GA Polygamy clustering outperforms GA clustering based on Sum Square Error (SSE) evaluation and Silhouette Coefficient (SC) evaluation. The n-mating in the crossover process of GAP clustering affects GAP clustering performance also performance of time to convergence of GAP clustering.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在解释与父亲交配的个体数量(n-交配)的变化对遗传算法一夫多妻(GAP)聚类性能的影响。GAP聚类是基于遗传算法的聚类方法。该方法的步骤与遗传算法聚类步骤相同,但交叉过程是在一夫多妻制下完成的。一个被选中的父亲与一个以上的母亲交配。我们通过Sum Square Error、Davies-Bouldin Index和Silhouette Coefficient三种聚类评价方法来评价基于遗传算法的热点数据聚类的性能。实验结果表明,基于和方误差(Sum Square Error, SSE)评价和轮廓系数(Silhouette Coefficient, SC)评价的GA聚类优于基于和方误差(Sum Square Error, SSE)评价的GA聚类。GAP聚类在交叉过程中的n-配对影响着GAP聚类的性能,也影响着GAP聚类的收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
n-Mating Effect on Genetic Algorithm-Based Clustering Performance for Hotspots Data
This study aims to explain the effect of variations in the number of individuals mated with father (n-mating) on the performance of Genetic Algorithm Polygamy (GAP) clustering. GAP clustering is clustering method based genetic algorithm. The steps of this method are same as GA clustering steps, but the crossover process is done with polygamy. One selected father is mated with more than one mother. We evaluate the performance of GA-based clustering for hotspot data with three clustering evaluations, namely Sum Square Error, Davies-Bouldin Index, and Silhouette Coefficient. Based on experimental result, GA Polygamy clustering outperforms GA clustering based on Sum Square Error (SSE) evaluation and Silhouette Coefficient (SC) evaluation. The n-mating in the crossover process of GAP clustering affects GAP clustering performance also performance of time to convergence of GAP clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信