基于神经网络的直流电磁铁磁非线性模型

J. M. Díaz-Chacón, R. B. B. Ovando-Martinez, C. Hernández, M. Arjona
{"title":"基于神经网络的直流电磁铁磁非线性模型","authors":"J. M. Díaz-Chacón, R. B. B. Ovando-Martinez, C. Hernández, M. Arjona","doi":"10.1109/CERMA.2010.142","DOIUrl":null,"url":null,"abstract":"This paper shows how an Artificial Neural Network model (ANN) can be used to fit the nonlinear magnetic behavior of a DC electromagnet. An ANN model is trained to obtain a generalized function of the B2-?r curve, which is commonly used in an electromagnetic model. Once the generalized function and its derivative are obtained, they are used to solve a magnetostatic nonlinear problem of a DC device using the finite element method and the Newton-Raphson algorithm.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural-Network Based Model of the Magnetic Nonlinearity of a DC Electromagnet\",\"authors\":\"J. M. Díaz-Chacón, R. B. B. Ovando-Martinez, C. Hernández, M. Arjona\",\"doi\":\"10.1109/CERMA.2010.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows how an Artificial Neural Network model (ANN) can be used to fit the nonlinear magnetic behavior of a DC electromagnet. An ANN model is trained to obtain a generalized function of the B2-?r curve, which is commonly used in an electromagnetic model. Once the generalized function and its derivative are obtained, they are used to solve a magnetostatic nonlinear problem of a DC device using the finite element method and the Newton-Raphson algorithm.\",\"PeriodicalId\":119218,\"journal\":{\"name\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2010.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了如何利用人工神经网络模型来拟合直流电磁铁的非线性磁性行为。训练一个人工神经网络模型来获得B2-?R曲线,通常用于电磁模型。得到广义函数及其导数后,利用有限元法和Newton-Raphson算法求解直流器件的静磁非线性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural-Network Based Model of the Magnetic Nonlinearity of a DC Electromagnet
This paper shows how an Artificial Neural Network model (ANN) can be used to fit the nonlinear magnetic behavior of a DC electromagnet. An ANN model is trained to obtain a generalized function of the B2-?r curve, which is commonly used in an electromagnetic model. Once the generalized function and its derivative are obtained, they are used to solve a magnetostatic nonlinear problem of a DC device using the finite element method and the Newton-Raphson algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信