非线性系统的神经网络自适应跟踪控制

Lin Niu, Liaoyuan Ye
{"title":"非线性系统的神经网络自适应跟踪控制","authors":"Lin Niu, Liaoyuan Ye","doi":"10.1109/CAR.2009.15","DOIUrl":null,"url":null,"abstract":"An adaptive neural network control strategy for a class of nonlinear system is proposed, which combines the technique in generalized predictive control theory and the gradient descent rule to accelerate learning and improve convergence with neural network’s capability of approximating to nonlinear function, Taking the neural network as a model of the system, control signals are directly obtained by minimizing the cumulative differences between a setpoint and output of the model. The effectiveness of the proposed control scheme is illustrated through simulations.","PeriodicalId":320307,"journal":{"name":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Tracking Control of Nonlinear Systems Using Neural Networks\",\"authors\":\"Lin Niu, Liaoyuan Ye\",\"doi\":\"10.1109/CAR.2009.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive neural network control strategy for a class of nonlinear system is proposed, which combines the technique in generalized predictive control theory and the gradient descent rule to accelerate learning and improve convergence with neural network’s capability of approximating to nonlinear function, Taking the neural network as a model of the system, control signals are directly obtained by minimizing the cumulative differences between a setpoint and output of the model. The effectiveness of the proposed control scheme is illustrated through simulations.\",\"PeriodicalId\":320307,\"journal\":{\"name\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAR.2009.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAR.2009.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对一类非线性系统,提出了一种自适应神经网络控制策略,该策略将广义预测控制理论中的技术与梯度下降规则相结合,利用神经网络逼近非线性函数的能力来加速学习和提高收敛性,将神经网络作为系统的模型,通过最小化模型的设定值与输出之间的累积差值直接获得控制信号。通过仿真验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Tracking Control of Nonlinear Systems Using Neural Networks
An adaptive neural network control strategy for a class of nonlinear system is proposed, which combines the technique in generalized predictive control theory and the gradient descent rule to accelerate learning and improve convergence with neural network’s capability of approximating to nonlinear function, Taking the neural network as a model of the system, control signals are directly obtained by minimizing the cumulative differences between a setpoint and output of the model. The effectiveness of the proposed control scheme is illustrated through simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信