凹形基因表达模型全局动力学的数学研究

I. Belgacem, J. Gouzé
{"title":"凹形基因表达模型全局动力学的数学研究","authors":"I. Belgacem, J. Gouzé","doi":"10.1109/MED.2014.6961562","DOIUrl":null,"url":null,"abstract":"We describe in this paper the global dynamical behavior of a mathematical model of expression of polymerase in bacteria. This model is given by a differential system and algebraic equations. We use some tools from monotone systems theory with concavity of nonlinearities to obtain a global qualitative result: either the trivial equilibrium is globally stable, either there exists a unique positive equilibrium which is globally stable in the positive orthant. The same result holds for a class of qualitatively defined functions. Some generalizations of this result are given.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mathematical study of the global dynamics of a concave gene expression model\",\"authors\":\"I. Belgacem, J. Gouzé\",\"doi\":\"10.1109/MED.2014.6961562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe in this paper the global dynamical behavior of a mathematical model of expression of polymerase in bacteria. This model is given by a differential system and algebraic equations. We use some tools from monotone systems theory with concavity of nonlinearities to obtain a global qualitative result: either the trivial equilibrium is globally stable, either there exists a unique positive equilibrium which is globally stable in the positive orthant. The same result holds for a class of qualitatively defined functions. Some generalizations of this result are given.\",\"PeriodicalId\":127957,\"journal\":{\"name\":\"22nd Mediterranean Conference on Control and Automation\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2014.6961562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了细菌中聚合酶表达的数学模型的全局动力学行为。该模型由微分系统和代数方程给出。利用非线性凸性单调系统理论中的一些工具,得到了一个全局的定性结果:要么平凡平衡点是全局稳定的,要么存在一个唯一的正平衡点在正正交上是全局稳定的。同样的结果也适用于定性定义的函数类。对这一结果作了一些推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical study of the global dynamics of a concave gene expression model
We describe in this paper the global dynamical behavior of a mathematical model of expression of polymerase in bacteria. This model is given by a differential system and algebraic equations. We use some tools from monotone systems theory with concavity of nonlinearities to obtain a global qualitative result: either the trivial equilibrium is globally stable, either there exists a unique positive equilibrium which is globally stable in the positive orthant. The same result holds for a class of qualitatively defined functions. Some generalizations of this result are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信