基于结构保持深度自编码器的数据可视化降维方法

Ayushman Singh, Kaustuv Nag
{"title":"基于结构保持深度自编码器的数据可视化降维方法","authors":"Ayushman Singh, Kaustuv Nag","doi":"10.1109/SNPD51163.2021.9705000","DOIUrl":null,"url":null,"abstract":"Here, we propose a structure-preserving deep autoencoder-based dimensionality reduction scheme for data visualization. For this, we introduce two regularizers for regularizing autoencoders. The proposed regularizers help the encoded feature space preserve the local and global structures present in the original feature space. A chosen reduced dimensionality of two or three for the encoded feature space enables us to visualize the extracted latent representations of the data using scatterplots. The proposed method has two variants, depending on which regularizer it uses. The proposed approach, moreover, is unsupervised and has predictability. We use three synthetic datasets and one real-world dataset to illustrate the effectiveness of the proposed method. We also visually compare it with three state-of-the-art data visualization schemes and discuss several future research directions.","PeriodicalId":235370,"journal":{"name":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Preserving Deep Autoencoder-based Dimensionality Reduction for Data Visualization\",\"authors\":\"Ayushman Singh, Kaustuv Nag\",\"doi\":\"10.1109/SNPD51163.2021.9705000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we propose a structure-preserving deep autoencoder-based dimensionality reduction scheme for data visualization. For this, we introduce two regularizers for regularizing autoencoders. The proposed regularizers help the encoded feature space preserve the local and global structures present in the original feature space. A chosen reduced dimensionality of two or three for the encoded feature space enables us to visualize the extracted latent representations of the data using scatterplots. The proposed method has two variants, depending on which regularizer it uses. The proposed approach, moreover, is unsupervised and has predictability. We use three synthetic datasets and one real-world dataset to illustrate the effectiveness of the proposed method. We also visually compare it with three state-of-the-art data visualization schemes and discuss several future research directions.\",\"PeriodicalId\":235370,\"journal\":{\"name\":\"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD51163.2021.9705000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD51163.2021.9705000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们提出了一种基于结构保持的深度自编码器的数据可视化降维方案。为此,我们引入两个正则化器来正则化自编码器。所提出的正则化器有助于编码的特征空间保留原始特征空间中存在的局部和全局结构。为编码特征空间选择降维二或降维三,使我们能够使用散点图可视化提取的数据的潜在表示。所提出的方法有两个变体,这取决于它使用的正则化器。此外,所提出的方法是无监督的,具有可预测性。我们使用三个合成数据集和一个真实数据集来说明所提出方法的有效性。我们还将其与三种最先进的数据可视化方案进行了可视化比较,并讨论了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-Preserving Deep Autoencoder-based Dimensionality Reduction for Data Visualization
Here, we propose a structure-preserving deep autoencoder-based dimensionality reduction scheme for data visualization. For this, we introduce two regularizers for regularizing autoencoders. The proposed regularizers help the encoded feature space preserve the local and global structures present in the original feature space. A chosen reduced dimensionality of two or three for the encoded feature space enables us to visualize the extracted latent representations of the data using scatterplots. The proposed method has two variants, depending on which regularizer it uses. The proposed approach, moreover, is unsupervised and has predictability. We use three synthetic datasets and one real-world dataset to illustrate the effectiveness of the proposed method. We also visually compare it with three state-of-the-art data visualization schemes and discuss several future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信