基于云的内容分发网络中副本服务器放置的贪婪启发式算法

Jagruti Sahoo, R. Glitho
{"title":"基于云的内容分发网络中副本服务器放置的贪婪启发式算法","authors":"Jagruti Sahoo, R. Glitho","doi":"10.1109/ISCC.2016.7543758","DOIUrl":null,"url":null,"abstract":"Recently, Cloud based Content Delivery Network (CCDN) has emerged as efficient content delivery architecture to provide content delivery services with improved Quality of Service (QoS), scalability and resource efficiency. Replica server placement is a key design issue in CCDNs and involves deciding the placement of replica servers on geographically dispersed cloud sites that minimizes the operational cost and satisfies QoS of the end-users. Since replica server placement problem is NP-hard, it is necessary to design an efficient heuristic for CCDNs. In this paper, we propose an efficient greedy heuristic for the replica server placement problem. The heuristic consists of two main procedures: placement and refinement. The placement procedure obtains an initial placement of replica servers on cloud sites with low operational cost. The refinement procedure removes the redundant cloud sites to reduce the operational cost further. The simulation results demonstrate that the proposed greedy heuristic outperforms the existing greedy heuristics in terms of computation time and the operational cost.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"480 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Greedy heuristic for replica server placement in Cloud based Content Delivery Networks\",\"authors\":\"Jagruti Sahoo, R. Glitho\",\"doi\":\"10.1109/ISCC.2016.7543758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Cloud based Content Delivery Network (CCDN) has emerged as efficient content delivery architecture to provide content delivery services with improved Quality of Service (QoS), scalability and resource efficiency. Replica server placement is a key design issue in CCDNs and involves deciding the placement of replica servers on geographically dispersed cloud sites that minimizes the operational cost and satisfies QoS of the end-users. Since replica server placement problem is NP-hard, it is necessary to design an efficient heuristic for CCDNs. In this paper, we propose an efficient greedy heuristic for the replica server placement problem. The heuristic consists of two main procedures: placement and refinement. The placement procedure obtains an initial placement of replica servers on cloud sites with low operational cost. The refinement procedure removes the redundant cloud sites to reduce the operational cost further. The simulation results demonstrate that the proposed greedy heuristic outperforms the existing greedy heuristics in terms of computation time and the operational cost.\",\"PeriodicalId\":148096,\"journal\":{\"name\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"volume\":\"480 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2016.7543758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

近年来,基于云的内容分发网络(CCDN)作为一种高效的内容分发架构应运而生,它提供了具有更高服务质量(QoS)、可扩展性和资源效率的内容分发服务。副本服务器的位置是ccdn中的一个关键设计问题,它涉及到在地理上分散的云站点上决定副本服务器的位置,以最大限度地降低运营成本并满足最终用户的QoS。由于副本服务器放置问题是np困难的,因此有必要为ccdn设计一个有效的启发式算法。在本文中,我们提出了一种有效的贪心启发式算法来解决副本服务器的放置问题。启发式包括两个主要过程:放置和细化。放置过程以较低的操作成本在云站点上获得副本服务器的初始位置。细化过程删除冗余的云站点,以进一步降低操作成本。仿真结果表明,所提出的贪心启发式算法在计算时间和运行成本方面都优于现有的贪心启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greedy heuristic for replica server placement in Cloud based Content Delivery Networks
Recently, Cloud based Content Delivery Network (CCDN) has emerged as efficient content delivery architecture to provide content delivery services with improved Quality of Service (QoS), scalability and resource efficiency. Replica server placement is a key design issue in CCDNs and involves deciding the placement of replica servers on geographically dispersed cloud sites that minimizes the operational cost and satisfies QoS of the end-users. Since replica server placement problem is NP-hard, it is necessary to design an efficient heuristic for CCDNs. In this paper, we propose an efficient greedy heuristic for the replica server placement problem. The heuristic consists of two main procedures: placement and refinement. The placement procedure obtains an initial placement of replica servers on cloud sites with low operational cost. The refinement procedure removes the redundant cloud sites to reduce the operational cost further. The simulation results demonstrate that the proposed greedy heuristic outperforms the existing greedy heuristics in terms of computation time and the operational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信