层次自组织地图生长过程控制的备选策略和质量度量研究

M. Dittenbach, A. Rauber, G. Polzlbauer
{"title":"层次自组织地图生长过程控制的备选策略和质量度量研究","authors":"M. Dittenbach, A. Rauber, G. Polzlbauer","doi":"10.1109/IJCNN.2005.1556395","DOIUrl":null,"url":null,"abstract":"The self-organizing map (SOM) is a very popular neural network model for data analysis and visualization of high-dimensional input data. The growing hierarchical self-organizing map (GHSOM) - being one of the many architectures based on the SOM - has the property of dynamically adapting its architecture during training by map growth as well as creating a hierarchical structure of maps, thus reflecting hierarchical relations in the data. This allows for viewing portions of the data at different levels of granularity. We review different SOM quality measures and also investigate alternative strategies as candidates for guiding the growth process of the GHSOM in order to improve the hierarchical representation of the data.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Investigation of alternative strategies and quality measures for controlling the growth process of the growing hierarchical self-organizing map\",\"authors\":\"M. Dittenbach, A. Rauber, G. Polzlbauer\",\"doi\":\"10.1109/IJCNN.2005.1556395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The self-organizing map (SOM) is a very popular neural network model for data analysis and visualization of high-dimensional input data. The growing hierarchical self-organizing map (GHSOM) - being one of the many architectures based on the SOM - has the property of dynamically adapting its architecture during training by map growth as well as creating a hierarchical structure of maps, thus reflecting hierarchical relations in the data. This allows for viewing portions of the data at different levels of granularity. We review different SOM quality measures and also investigate alternative strategies as candidates for guiding the growth process of the GHSOM in order to improve the hierarchical representation of the data.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

自组织映射(SOM)是一种非常流行的用于高维输入数据分析和可视化的神经网络模型。增长层次自组织映射(growth hierarchical self-organizing map, GHSOM)是基于SOM的众多体系结构之一,它具有在训练过程中通过地图增长动态调整其体系结构的特性,并创建地图的层次结构,从而反映数据中的层次关系。这允许以不同粒度级别查看部分数据。我们回顾了不同的SOM质量度量,并研究了替代策略作为指导GHSOM增长过程的候选策略,以改善数据的分层表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of alternative strategies and quality measures for controlling the growth process of the growing hierarchical self-organizing map
The self-organizing map (SOM) is a very popular neural network model for data analysis and visualization of high-dimensional input data. The growing hierarchical self-organizing map (GHSOM) - being one of the many architectures based on the SOM - has the property of dynamically adapting its architecture during training by map growth as well as creating a hierarchical structure of maps, thus reflecting hierarchical relations in the data. This allows for viewing portions of the data at different levels of granularity. We review different SOM quality measures and also investigate alternative strategies as candidates for guiding the growth process of the GHSOM in order to improve the hierarchical representation of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信