电力系统人工神经网络约简模型

J. Ramirez
{"title":"电力系统人工神经网络约简模型","authors":"J. Ramirez","doi":"10.1109/IJCNN.2005.1556314","DOIUrl":null,"url":null,"abstract":"This paper is aimed to the application of artificial neural networks (ANN) for constructing a power system reduced model, also termed dynamic equivalent. ANN are trained to help in constructing dynamic equivalents, which is considered a hard task in the context of electrical power systems. The main objective is to reproduce the complex voltage at some relevant nodes. The simulation results prove the applicability and robustness of this innovative approach.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power system reduced model by artificial neural networks\",\"authors\":\"J. Ramirez\",\"doi\":\"10.1109/IJCNN.2005.1556314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is aimed to the application of artificial neural networks (ANN) for constructing a power system reduced model, also termed dynamic equivalent. ANN are trained to help in constructing dynamic equivalents, which is considered a hard task in the context of electrical power systems. The main objective is to reproduce the complex voltage at some relevant nodes. The simulation results prove the applicability and robustness of this innovative approach.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是应用人工神经网络(ANN)来建立电力系统的约简模型,也称为动态等效模型。人工神经网络被训练来帮助构建动态当量,这在电力系统中被认为是一项艰巨的任务。主要目标是在一些相关节点上重现复杂电压。仿真结果证明了该方法的适用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power system reduced model by artificial neural networks
This paper is aimed to the application of artificial neural networks (ANN) for constructing a power system reduced model, also termed dynamic equivalent. ANN are trained to help in constructing dynamic equivalents, which is considered a hard task in the context of electrical power systems. The main objective is to reproduce the complex voltage at some relevant nodes. The simulation results prove the applicability and robustness of this innovative approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信