基于WEKA的中文文档聚类研究

P. Han, Dongbo Wang, Qingwei Zhao
{"title":"基于WEKA的中文文档聚类研究","authors":"P. Han, Dongbo Wang, Qingwei Zhao","doi":"10.1109/ICMLC.2011.6016955","DOIUrl":null,"url":null,"abstract":"This paper gives an experiment on Chinese document clustering based on WEKA. WEKA is an excellent open-source of data mining tool in abroad, but it is rarely used at home. We conducted the Chinese document clustering by K-means algorithm through adjusting the parameters in WEKA. Recall, precision and F-measure method are used to evaluate the experiment. We hope to provide a reference for researchers in this field.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The research on Chinese document clustering based on WEKA\",\"authors\":\"P. Han, Dongbo Wang, Qingwei Zhao\",\"doi\":\"10.1109/ICMLC.2011.6016955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives an experiment on Chinese document clustering based on WEKA. WEKA is an excellent open-source of data mining tool in abroad, but it is rarely used at home. We conducted the Chinese document clustering by K-means algorithm through adjusting the parameters in WEKA. Recall, precision and F-measure method are used to evaluate the experiment. We hope to provide a reference for researchers in this field.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文给出了一个基于WEKA的中文文档聚类实验。WEKA在国外是一个优秀的开源数据挖掘工具,但在国内却很少使用。我们通过调整WEKA中的参数,用K-means算法对中文文档进行聚类。采用召回率、精密度和f测量法对实验进行评价。希望为该领域的研究人员提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The research on Chinese document clustering based on WEKA
This paper gives an experiment on Chinese document clustering based on WEKA. WEKA is an excellent open-source of data mining tool in abroad, but it is rarely used at home. We conducted the Chinese document clustering by K-means algorithm through adjusting the parameters in WEKA. Recall, precision and F-measure method are used to evaluate the experiment. We hope to provide a reference for researchers in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信