N. Desai, E. Lusk, Daniel Buettner, Andrew Cherry, T. Voran
{"title":"大规模系统故障模拟","authors":"N. Desai, E. Lusk, Daniel Buettner, Andrew Cherry, T. Voran","doi":"10.1109/ICPP-W.2008.31","DOIUrl":null,"url":null,"abstract":"Developing fault management mechanisms is a difficult task because of the unpredictable nature of failures. In this paper, we present a fault simulation framework for Blue Gene/P systems implemented as a part of the Cobalt resource manager. The primary goal of this framework is to support system software development. We also present a hardware diagnostic system that we have implemented using this framework.","PeriodicalId":231042,"journal":{"name":"2008 International Conference on Parallel Processing - Workshops","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulating Failures on Large-Scale Systems\",\"authors\":\"N. Desai, E. Lusk, Daniel Buettner, Andrew Cherry, T. Voran\",\"doi\":\"10.1109/ICPP-W.2008.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing fault management mechanisms is a difficult task because of the unpredictable nature of failures. In this paper, we present a fault simulation framework for Blue Gene/P systems implemented as a part of the Cobalt resource manager. The primary goal of this framework is to support system software development. We also present a hardware diagnostic system that we have implemented using this framework.\",\"PeriodicalId\":231042,\"journal\":{\"name\":\"2008 International Conference on Parallel Processing - Workshops\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Parallel Processing - Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP-W.2008.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Parallel Processing - Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP-W.2008.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing fault management mechanisms is a difficult task because of the unpredictable nature of failures. In this paper, we present a fault simulation framework for Blue Gene/P systems implemented as a part of the Cobalt resource manager. The primary goal of this framework is to support system software development. We also present a hardware diagnostic system that we have implemented using this framework.