利用CNN和RNN对鲨鱼行为进行时域和频域分类

Richard Nguyen, N. Sathyanarayana, H. Yeh, Yu Yang
{"title":"利用CNN和RNN对鲨鱼行为进行时域和频域分类","authors":"Richard Nguyen, N. Sathyanarayana, H. Yeh, Yu Yang","doi":"10.1109/IGESSC55810.2022.9955340","DOIUrl":null,"url":null,"abstract":"This paper uses accelerometer data from California horn sharks obtained from the Shark Lab at California State University, Long Beach, (CSULB) to build a behavior classifier using deep convolutional neural networks (CNN) and recurrent neural networks (RNN). By transforming time series data into frequency domain using Fast Fourier Transform (FFT), we aim to improve the accuracy of classification for our four different behaviors: feeding, swimming, resting, and nondeterministic motion (NDM). We process 2, 5, and 10 seconds snapshots of the data in the time and frequency domains, which are fed into the neural networks toolbox to train the classifiers. It is observed that the performance of both models is drastically improved when the frequency domain data is applied in the deep neural network.","PeriodicalId":166147,"journal":{"name":"2022 IEEE Green Energy and Smart System Systems(IGESSC)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classifying Shark Behavior in Time and Frequency Domain using CNN and RNN\",\"authors\":\"Richard Nguyen, N. Sathyanarayana, H. Yeh, Yu Yang\",\"doi\":\"10.1109/IGESSC55810.2022.9955340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses accelerometer data from California horn sharks obtained from the Shark Lab at California State University, Long Beach, (CSULB) to build a behavior classifier using deep convolutional neural networks (CNN) and recurrent neural networks (RNN). By transforming time series data into frequency domain using Fast Fourier Transform (FFT), we aim to improve the accuracy of classification for our four different behaviors: feeding, swimming, resting, and nondeterministic motion (NDM). We process 2, 5, and 10 seconds snapshots of the data in the time and frequency domains, which are fed into the neural networks toolbox to train the classifiers. It is observed that the performance of both models is drastically improved when the frequency domain data is applied in the deep neural network.\",\"PeriodicalId\":166147,\"journal\":{\"name\":\"2022 IEEE Green Energy and Smart System Systems(IGESSC)\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Green Energy and Smart System Systems(IGESSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGESSC55810.2022.9955340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Green Energy and Smart System Systems(IGESSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGESSC55810.2022.9955340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文使用加州州立大学长滩分校鲨鱼实验室(CSULB)获得的加州角鲨加速度计数据,使用深度卷积神经网络(CNN)和循环神经网络(RNN)构建行为分类器。通过使用快速傅里叶变换(FFT)将时间序列数据转换到频域,我们的目标是提高四种不同行为的分类精度:进食、游泳、休息和不确定性运动(NDM)。我们在时间和频域中分别处理2秒、5秒和10秒的数据快照,并将其输入神经网络工具箱以训练分类器。结果表明,将频域数据应用于深度神经网络后,两种模型的性能都得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Shark Behavior in Time and Frequency Domain using CNN and RNN
This paper uses accelerometer data from California horn sharks obtained from the Shark Lab at California State University, Long Beach, (CSULB) to build a behavior classifier using deep convolutional neural networks (CNN) and recurrent neural networks (RNN). By transforming time series data into frequency domain using Fast Fourier Transform (FFT), we aim to improve the accuracy of classification for our four different behaviors: feeding, swimming, resting, and nondeterministic motion (NDM). We process 2, 5, and 10 seconds snapshots of the data in the time and frequency domains, which are fed into the neural networks toolbox to train the classifiers. It is observed that the performance of both models is drastically improved when the frequency domain data is applied in the deep neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信