具有无限视界代价的非零和博弈的在线Stackelberg学习解*

Zonglei Jing, Xiaoqian Li, Xianglong Li, P. Ju, Tongxing Li, Shufen Zhao
{"title":"具有无限视界代价的非零和博弈的在线Stackelberg学习解*","authors":"Zonglei Jing, Xiaoqian Li, Xianglong Li, P. Ju, Tongxing Li, Shufen Zhao","doi":"10.1109/CAC57257.2022.10056029","DOIUrl":null,"url":null,"abstract":"In this paper, we consider online integral RL to derive the optimal solution of mixed H2/H∞ problem. In mixed H2/H∞ control, both control input and deterministic disturbance shaped the Stackelberg game. In this model, the dynamic information is incomplete due to the complexity uncertain environment. The multi-players in this system with hierarchical structure is cooperative, moreover, an extra Lagrange multiplier is required to construct the dynamic relationship of leader and follower. The learning algorithm obtain the solutions of coupled Riccati and Hamilton-Jacobi equations online which derives the adaptive control method approximates the optimal cost function and the Stackelberg form equilibrium. The existence of incentive condition also makes the convergence of the estimation to the realistic date. Moreover, the closed-loop dynamical is guaranteed stability by using Lyapunov stability analysis.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Stackelberg learning solution for non-zero-sum games with infinite horizon cost*\",\"authors\":\"Zonglei Jing, Xiaoqian Li, Xianglong Li, P. Ju, Tongxing Li, Shufen Zhao\",\"doi\":\"10.1109/CAC57257.2022.10056029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider online integral RL to derive the optimal solution of mixed H2/H∞ problem. In mixed H2/H∞ control, both control input and deterministic disturbance shaped the Stackelberg game. In this model, the dynamic information is incomplete due to the complexity uncertain environment. The multi-players in this system with hierarchical structure is cooperative, moreover, an extra Lagrange multiplier is required to construct the dynamic relationship of leader and follower. The learning algorithm obtain the solutions of coupled Riccati and Hamilton-Jacobi equations online which derives the adaptive control method approximates the optimal cost function and the Stackelberg form equilibrium. The existence of incentive condition also makes the convergence of the estimation to the realistic date. Moreover, the closed-loop dynamical is guaranteed stability by using Lyapunov stability analysis.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10056029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10056029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑在线积分RL来推导混合H2/H∞问题的最优解。在混合H2/H∞控制中,控制输入和确定性扰动共同塑造了Stackelberg博弈。在该模型中,由于环境的复杂性和不确定性,动态信息是不完整的。在这种分层结构的系统中,多参与者是合作的,并且需要一个额外的拉格朗日乘数来构建领导者和追随者的动态关系。该学习算法在线得到Riccati和Hamilton-Jacobi耦合方程的解,推导出逼近最优代价函数和Stackelberg形式平衡的自适应控制方法。激励条件的存在也使得估计收敛到现实日期。通过李雅普诺夫稳定性分析,保证了闭环系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Stackelberg learning solution for non-zero-sum games with infinite horizon cost*
In this paper, we consider online integral RL to derive the optimal solution of mixed H2/H∞ problem. In mixed H2/H∞ control, both control input and deterministic disturbance shaped the Stackelberg game. In this model, the dynamic information is incomplete due to the complexity uncertain environment. The multi-players in this system with hierarchical structure is cooperative, moreover, an extra Lagrange multiplier is required to construct the dynamic relationship of leader and follower. The learning algorithm obtain the solutions of coupled Riccati and Hamilton-Jacobi equations online which derives the adaptive control method approximates the optimal cost function and the Stackelberg form equilibrium. The existence of incentive condition also makes the convergence of the estimation to the realistic date. Moreover, the closed-loop dynamical is guaranteed stability by using Lyapunov stability analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信