利用边缘计算的先进振动信号处理来监测风力涡轮机传动系统

C. Peeters, T. Verstraeten, A. Nowé, P. Daems, J. Helsen
{"title":"利用边缘计算的先进振动信号处理来监测风力涡轮机传动系统","authors":"C. Peeters, T. Verstraeten, A. Nowé, P. Daems, J. Helsen","doi":"10.1115/iowtc2019-7622","DOIUrl":null,"url":null,"abstract":"\n This paper illustrates an integrated monitoring approach for wind turbines exploiting this Industry 4.0 context. Our combined edge-cloud processing approach is documented. We show edge processing of vibration data captured on a wind turbine gearbox to extract diagnostic features. Focus is on statistical indicators. Real-life signals collected on an offshore turbine are used to illustrate the concept of local processing. The NVIDIA Jet-son platform serves as edge computation medium. Furthermore, we show an integrated failure detection and fault severity assessment at the cloud level. Health assessment and fault localization combines state-of-the-art vibration signal processing on high frequency data (10kHz and higher) with machine learning models to allow anomaly detection for each processing pipeline. Again this is illustrated using data from an offshore wind farm. Additionally, the fact that data of similar wind turbines in the farm is collected allows for exploiting system similarity over the fleet.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advanced Vibration Signal Processing Using Edge Computing to Monitor Wind Turbine Drivetrains\",\"authors\":\"C. Peeters, T. Verstraeten, A. Nowé, P. Daems, J. Helsen\",\"doi\":\"10.1115/iowtc2019-7622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper illustrates an integrated monitoring approach for wind turbines exploiting this Industry 4.0 context. Our combined edge-cloud processing approach is documented. We show edge processing of vibration data captured on a wind turbine gearbox to extract diagnostic features. Focus is on statistical indicators. Real-life signals collected on an offshore turbine are used to illustrate the concept of local processing. The NVIDIA Jet-son platform serves as edge computation medium. Furthermore, we show an integrated failure detection and fault severity assessment at the cloud level. Health assessment and fault localization combines state-of-the-art vibration signal processing on high frequency data (10kHz and higher) with machine learning models to allow anomaly detection for each processing pipeline. Again this is illustrated using data from an offshore wind farm. Additionally, the fact that data of similar wind turbines in the farm is collected allows for exploiting system similarity over the fleet.\",\"PeriodicalId\":131294,\"journal\":{\"name\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iowtc2019-7622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文阐述了一种利用工业4.0背景的风力涡轮机综合监测方法。我们的结合边缘云处理方法被记录下来。我们展示了在风力涡轮机齿轮箱上捕获的振动数据的边缘处理,以提取诊断特征。重点是统计指标。在海上涡轮机上收集的真实信号被用来说明本地处理的概念。NVIDIA Jet-son平台作为边缘计算介质。此外,我们展示了在云级别集成的故障检测和故障严重性评估。健康评估和故障定位将最先进的高频数据(10kHz及更高)振动信号处理与机器学习模型相结合,允许对每个处理管道进行异常检测。同样,这是用海上风力发电场的数据来说明的。此外,收集了农场中类似风力涡轮机的数据,可以利用整个船队的系统相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Vibration Signal Processing Using Edge Computing to Monitor Wind Turbine Drivetrains
This paper illustrates an integrated monitoring approach for wind turbines exploiting this Industry 4.0 context. Our combined edge-cloud processing approach is documented. We show edge processing of vibration data captured on a wind turbine gearbox to extract diagnostic features. Focus is on statistical indicators. Real-life signals collected on an offshore turbine are used to illustrate the concept of local processing. The NVIDIA Jet-son platform serves as edge computation medium. Furthermore, we show an integrated failure detection and fault severity assessment at the cloud level. Health assessment and fault localization combines state-of-the-art vibration signal processing on high frequency data (10kHz and higher) with machine learning models to allow anomaly detection for each processing pipeline. Again this is illustrated using data from an offshore wind farm. Additionally, the fact that data of similar wind turbines in the farm is collected allows for exploiting system similarity over the fleet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信