视觉无损图像压缩的可见性度量

Nanyang Ye, M. Pérez-Ortiz, Rafał K. Mantiuk
{"title":"视觉无损图像压缩的可见性度量","authors":"Nanyang Ye, M. Pérez-Ortiz, Rafał K. Mantiuk","doi":"10.1109/PCS48520.2019.8954560","DOIUrl":null,"url":null,"abstract":"Encoding images in a visually lossless manner helps to achieve the best trade-off between image compression performance and quality and so that compression artifacts are invisible to the majority of users. Visually lossless encoding can often be achieved by manually adjusting compression quality parameters of existing lossy compression methods, such as JPEG or WebP. But the required compression quality parameter can also be determined automatically using visibility metrics. However, creating an accurate visibility metric is challenging because of the complexity of the human visual system and the effort needed to collect the required data. In this paper, we investigate how to train an accurate visibility metric for visually lossless compression from a relatively small dataset. Our experiments show that prediction error can be reduced by 40% compared with the state-of-theart, and that our proposed method can save between 25%-75% of storage space compared with the default quality parameter used in commercial software. We demonstrate how the visibility metric can be used for visually lossless image compression and for benchmarking image compression encoders.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visibility Metric for Visually Lossless Image Compression\",\"authors\":\"Nanyang Ye, M. Pérez-Ortiz, Rafał K. Mantiuk\",\"doi\":\"10.1109/PCS48520.2019.8954560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Encoding images in a visually lossless manner helps to achieve the best trade-off between image compression performance and quality and so that compression artifacts are invisible to the majority of users. Visually lossless encoding can often be achieved by manually adjusting compression quality parameters of existing lossy compression methods, such as JPEG or WebP. But the required compression quality parameter can also be determined automatically using visibility metrics. However, creating an accurate visibility metric is challenging because of the complexity of the human visual system and the effort needed to collect the required data. In this paper, we investigate how to train an accurate visibility metric for visually lossless compression from a relatively small dataset. Our experiments show that prediction error can be reduced by 40% compared with the state-of-theart, and that our proposed method can save between 25%-75% of storage space compared with the default quality parameter used in commercial software. We demonstrate how the visibility metric can be used for visually lossless image compression and for benchmarking image compression encoders.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

以视觉无损的方式编码图像有助于实现图像压缩性能和质量之间的最佳权衡,从而使压缩工件对大多数用户不可见。视觉上的无损编码通常可以通过手动调整现有有损压缩方法(如JPEG或WebP)的压缩质量参数来实现。但所需的压缩质量参数也可以使用可见性指标自动确定。然而,由于人类视觉系统的复杂性和收集所需数据的工作量,创建准确的可见性度量是具有挑战性的。在本文中,我们研究了如何从一个相对较小的数据集训练一个精确的视觉无损压缩可见性度量。我们的实验表明,与当前状态相比,我们的预测误差可以降低40%,并且与商业软件中使用的默认质量参数相比,我们提出的方法可以节省25%-75%的存储空间。我们演示了如何将可见性度量用于视觉无损图像压缩和对图像压缩编码器进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visibility Metric for Visually Lossless Image Compression
Encoding images in a visually lossless manner helps to achieve the best trade-off between image compression performance and quality and so that compression artifacts are invisible to the majority of users. Visually lossless encoding can often be achieved by manually adjusting compression quality parameters of existing lossy compression methods, such as JPEG or WebP. But the required compression quality parameter can also be determined automatically using visibility metrics. However, creating an accurate visibility metric is challenging because of the complexity of the human visual system and the effort needed to collect the required data. In this paper, we investigate how to train an accurate visibility metric for visually lossless compression from a relatively small dataset. Our experiments show that prediction error can be reduced by 40% compared with the state-of-theart, and that our proposed method can save between 25%-75% of storage space compared with the default quality parameter used in commercial software. We demonstrate how the visibility metric can be used for visually lossless image compression and for benchmarking image compression encoders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信