基于CPD-GEVD的时延估计应用于有误差的张量GNSS阵列

Daniel Valle de Lima, J. Costa, F. Antreich, R. K. Miranda, G. D. Galdo
{"title":"基于CPD-GEVD的时延估计应用于有误差的张量GNSS阵列","authors":"Daniel Valle de Lima, J. Costa, F. Antreich, R. K. Miranda, G. D. Galdo","doi":"10.1109/CAMSAP.2017.8313098","DOIUrl":null,"url":null,"abstract":"Safety-critical applications (SCA), such as autonomous driving, and liability critical applications (LCA), such as fisheries management, require a robust positioning system in demanding signal environments with coherent multipath while ensuring reasonably low complexity. In this context, antenna array-based Global Navigation Satellite Systems (GNSS) receivers with array signal processing schemes allow the spatial separation of line-of-sight (LOS) from multipath components. In real-world scenarios array imperfections alter the expected array response, resulting in parameter estimation and filtering errors. In this paper, we propose an approach to time-delay estimation for a tensor-based GNSS receiver that mitigates the effect of multipath components while also being robust against array imperfections. This approach is based on the Canonical Polyadic Decomposition by a Generalized Eigenvalue Decomposition (GPD-GEVD) to recover the signal for each impinging component. Our scheme outperforms both the Higher-Order Singular Value Decomposition (HOSVD) eigenfilter and Direction of Arrival and Khatri-Rao factorization (DoA/KRF) approaches, which are state-of-the-art tensor-based schemes for time-delay estimation, particularly when array imperfections are present.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Time-Delay estimation via CPD-GEVD applied to tensor-based GNSS arrays with errors\",\"authors\":\"Daniel Valle de Lima, J. Costa, F. Antreich, R. K. Miranda, G. D. Galdo\",\"doi\":\"10.1109/CAMSAP.2017.8313098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety-critical applications (SCA), such as autonomous driving, and liability critical applications (LCA), such as fisheries management, require a robust positioning system in demanding signal environments with coherent multipath while ensuring reasonably low complexity. In this context, antenna array-based Global Navigation Satellite Systems (GNSS) receivers with array signal processing schemes allow the spatial separation of line-of-sight (LOS) from multipath components. In real-world scenarios array imperfections alter the expected array response, resulting in parameter estimation and filtering errors. In this paper, we propose an approach to time-delay estimation for a tensor-based GNSS receiver that mitigates the effect of multipath components while also being robust against array imperfections. This approach is based on the Canonical Polyadic Decomposition by a Generalized Eigenvalue Decomposition (GPD-GEVD) to recover the signal for each impinging component. Our scheme outperforms both the Higher-Order Singular Value Decomposition (HOSVD) eigenfilter and Direction of Arrival and Khatri-Rao factorization (DoA/KRF) approaches, which are state-of-the-art tensor-based schemes for time-delay estimation, particularly when array imperfections are present.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

安全关键型应用(SCA),如自动驾驶,责任关键型应用(LCA),如渔业管理,需要在要求苛刻的信号环境中具有相干多路径的强大定位系统,同时确保合理的低复杂性。在这种情况下,具有阵列信号处理方案的基于天线阵列的全球导航卫星系统(GNSS)接收器允许从多路径组件中实现视线(LOS)的空间分离。在实际场景中,阵列的不完美会改变预期的阵列响应,导致参数估计和滤波错误。在本文中,我们提出了一种基于张量的GNSS接收机的时延估计方法,该方法可以减轻多径分量的影响,同时对阵列缺陷具有鲁棒性。该方法基于正则多进分解,通过广义特征值分解(GPD-GEVD)来恢复每个碰撞分量的信号。我们的方案优于高阶奇异值分解(HOSVD)特征滤波器和到达方向和Khatri-Rao分解(DoA/KRF)方法,这些方法是最先进的基于张量的时延估计方案,特别是当阵列存在缺陷时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Delay estimation via CPD-GEVD applied to tensor-based GNSS arrays with errors
Safety-critical applications (SCA), such as autonomous driving, and liability critical applications (LCA), such as fisheries management, require a robust positioning system in demanding signal environments with coherent multipath while ensuring reasonably low complexity. In this context, antenna array-based Global Navigation Satellite Systems (GNSS) receivers with array signal processing schemes allow the spatial separation of line-of-sight (LOS) from multipath components. In real-world scenarios array imperfections alter the expected array response, resulting in parameter estimation and filtering errors. In this paper, we propose an approach to time-delay estimation for a tensor-based GNSS receiver that mitigates the effect of multipath components while also being robust against array imperfections. This approach is based on the Canonical Polyadic Decomposition by a Generalized Eigenvalue Decomposition (GPD-GEVD) to recover the signal for each impinging component. Our scheme outperforms both the Higher-Order Singular Value Decomposition (HOSVD) eigenfilter and Direction of Arrival and Khatri-Rao factorization (DoA/KRF) approaches, which are state-of-the-art tensor-based schemes for time-delay estimation, particularly when array imperfections are present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信