粒子经典动力学逆问题的矩阵解

Ana B. Calado, Juan D. Bulnes
{"title":"粒子经典动力学逆问题的矩阵解","authors":"Ana B. Calado, Juan D. Bulnes","doi":"10.15406/paij.2023.07.00279","DOIUrl":null,"url":null,"abstract":"We solve the inverse problem corresponding to the fundamental problem of the classical dynamics of a material particle through a matrix treatment: assuming knowing the mass and the position (the trajectory, in relation to an inertial reference) of a particle at all times, we impose that this corresponds to the eigenvector of a “position matrix\". Subsequent development leads to a “force matrix\", which has the resultant force on the particle as its eigenvector. We identified some limitations of this matrix treatment.","PeriodicalId":377724,"journal":{"name":"Physics & Astronomy International Journal","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix solution for the inverse problem of classical dynamics of a particle\",\"authors\":\"Ana B. Calado, Juan D. Bulnes\",\"doi\":\"10.15406/paij.2023.07.00279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve the inverse problem corresponding to the fundamental problem of the classical dynamics of a material particle through a matrix treatment: assuming knowing the mass and the position (the trajectory, in relation to an inertial reference) of a particle at all times, we impose that this corresponds to the eigenvector of a “position matrix\\\". Subsequent development leads to a “force matrix\\\", which has the resultant force on the particle as its eigenvector. We identified some limitations of this matrix treatment.\",\"PeriodicalId\":377724,\"journal\":{\"name\":\"Physics & Astronomy International Journal\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics & Astronomy International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/paij.2023.07.00279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics & Astronomy International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/paij.2023.07.00279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过矩阵处理来解决与材料粒子经典动力学基本问题相对应的逆问题:假设知道粒子在任何时候的质量和位置(相对于惯性参考的轨迹),我们将其与“位置矩阵”的特征向量相对应。随后的发展导致了一个“力矩阵”,它以粒子上的合力作为其特征向量。我们发现了这种基质处理的一些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix solution for the inverse problem of classical dynamics of a particle
We solve the inverse problem corresponding to the fundamental problem of the classical dynamics of a material particle through a matrix treatment: assuming knowing the mass and the position (the trajectory, in relation to an inertial reference) of a particle at all times, we impose that this corresponds to the eigenvector of a “position matrix". Subsequent development leads to a “force matrix", which has the resultant force on the particle as its eigenvector. We identified some limitations of this matrix treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信