求解电磁学稀疏线性系统的多电平逆分解预调节器

Yiming Bu, B. Carpentieri, Zhao-Li Shen, Ting-Zhu Huang
{"title":"求解电磁学稀疏线性系统的多电平逆分解预调节器","authors":"Yiming Bu, B. Carpentieri, Zhao-Li Shen, Ting-Zhu Huang","doi":"10.1109/CEM.2015.7237411","DOIUrl":null,"url":null,"abstract":"We introduce an algebraic recursive multilevel approximate inverse-based preconditioner, based on a distributed Schur complement formulation. The proposed preconditioner combines recursive combinatorial algorithms and multilevel mechanisms to maximize sparsity during the facorization. Experiments on selected sparse linear systems from electromagnetics applications demonstrate the potential of the proposed method, also against other state-of-the-art solvers.","PeriodicalId":409699,"journal":{"name":"2015 Computational Electromagnetics International Workshop (CEM)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multilevel inverse-based factorization preconditioner for solving sparse linear systems in electromagnetics\",\"authors\":\"Yiming Bu, B. Carpentieri, Zhao-Li Shen, Ting-Zhu Huang\",\"doi\":\"10.1109/CEM.2015.7237411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an algebraic recursive multilevel approximate inverse-based preconditioner, based on a distributed Schur complement formulation. The proposed preconditioner combines recursive combinatorial algorithms and multilevel mechanisms to maximize sparsity during the facorization. Experiments on selected sparse linear systems from electromagnetics applications demonstrate the potential of the proposed method, also against other state-of-the-art solvers.\",\"PeriodicalId\":409699,\"journal\":{\"name\":\"2015 Computational Electromagnetics International Workshop (CEM)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Computational Electromagnetics International Workshop (CEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEM.2015.7237411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Computational Electromagnetics International Workshop (CEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2015.7237411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于分布Schur补公式,提出了一种代数递归多级近似逆预条件。该预条件结合了递归组合算法和多层机制,在分解过程中最大限度地提高了稀疏性。从电磁学应用中选择的稀疏线性系统的实验证明了所提出方法的潜力,也与其他最先进的求解器相比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel inverse-based factorization preconditioner for solving sparse linear systems in electromagnetics
We introduce an algebraic recursive multilevel approximate inverse-based preconditioner, based on a distributed Schur complement formulation. The proposed preconditioner combines recursive combinatorial algorithms and multilevel mechanisms to maximize sparsity during the facorization. Experiments on selected sparse linear systems from electromagnetics applications demonstrate the potential of the proposed method, also against other state-of-the-art solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信