{"title":"配电网管理系统的多目标馈线重构","authors":"I. Roytelman, V. Melnik, S.S.H. Lee, R. Lugtu","doi":"10.1109/PICA.1995.515286","DOIUrl":null,"url":null,"abstract":"Feeder reconfiguration for use by distribution management systems is discussed in this paper. Multiple objectives are proposed to reflect realistic operating environments while achieving all benefits from feeder reconfiguration. The multiple objectives considered are minimization of power losses, load balancing among supply transformers, minimization of the worst voltage drop, minimization of service interruption frequency, and balanced service of important customers for enhanced service reliability. The objective function containing five different objectives are optimized subject to capacity and protection device constraints. The overall solution approach is a two-stage process. In the first stage, a suboptimal solution is found by analyzing the mesh distribution system in which all open switches are simulated to be closed. Applying special power flow analyses to this mesh network, a radial distribution system is determined as an intermediate solution. In the second stage, this solution is continuously improved by the branch exchange scheme. Special topology models are also developed to accelerate the search procedure. Use of the algorithm is illustrated by numerical examples.","PeriodicalId":294493,"journal":{"name":"Proceedings of Power Industry Computer Applications Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Multi-objective feeder reconfiguration by distribution management system\",\"authors\":\"I. Roytelman, V. Melnik, S.S.H. Lee, R. Lugtu\",\"doi\":\"10.1109/PICA.1995.515286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feeder reconfiguration for use by distribution management systems is discussed in this paper. Multiple objectives are proposed to reflect realistic operating environments while achieving all benefits from feeder reconfiguration. The multiple objectives considered are minimization of power losses, load balancing among supply transformers, minimization of the worst voltage drop, minimization of service interruption frequency, and balanced service of important customers for enhanced service reliability. The objective function containing five different objectives are optimized subject to capacity and protection device constraints. The overall solution approach is a two-stage process. In the first stage, a suboptimal solution is found by analyzing the mesh distribution system in which all open switches are simulated to be closed. Applying special power flow analyses to this mesh network, a radial distribution system is determined as an intermediate solution. In the second stage, this solution is continuously improved by the branch exchange scheme. Special topology models are also developed to accelerate the search procedure. Use of the algorithm is illustrated by numerical examples.\",\"PeriodicalId\":294493,\"journal\":{\"name\":\"Proceedings of Power Industry Computer Applications Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Power Industry Computer Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICA.1995.515286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Power Industry Computer Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1995.515286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective feeder reconfiguration by distribution management system
Feeder reconfiguration for use by distribution management systems is discussed in this paper. Multiple objectives are proposed to reflect realistic operating environments while achieving all benefits from feeder reconfiguration. The multiple objectives considered are minimization of power losses, load balancing among supply transformers, minimization of the worst voltage drop, minimization of service interruption frequency, and balanced service of important customers for enhanced service reliability. The objective function containing five different objectives are optimized subject to capacity and protection device constraints. The overall solution approach is a two-stage process. In the first stage, a suboptimal solution is found by analyzing the mesh distribution system in which all open switches are simulated to be closed. Applying special power flow analyses to this mesh network, a radial distribution system is determined as an intermediate solution. In the second stage, this solution is continuously improved by the branch exchange scheme. Special topology models are also developed to accelerate the search procedure. Use of the algorithm is illustrated by numerical examples.