{"title":"可信安全地理路由协议:采用可信安全地理路由协议检测移动自组网中的外部攻击","authors":"Francis H. Shajin, P. Rajesh","doi":"10.1108/ijpcc-09-2020-0136","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to evaluate the direct trust value for each node and calculate the trust value of all nodes satisfying the condition and update the trust value and value each trust update interval for a secure and efficient communication between sender and destination node. Hence, a Trusted Secure Geographic Routing Protocol (TSGRP) has been proposed for detecting attackers (presence of the hacker), considering the trust value for a node produced by combining the location trusted information and the direct trusted information.\n\n\nDesign/methodology/approach\nAmelioration in the research studies related to mobile ad hoc networks (MANETs) and wireless sensor networks has shown greater concern in the presence of malicious nodes, due to which the delivery percentage in any given network can degrade to a larger extent, and hence make the network less reliable and more vulnerable to security.\n\n\nFindings\nTSGRP has outperformed the conventional protocols for detecting attacks in MANET. TSGRP is establishing a trust-based secure communication between the sender and destination node. The evaluated direct trust value is used after the transmission of route-request and route-reply packets, to evaluate the direct trust value of each node and a secure path is established between the sender and the destination node. The effectiveness of the proposed TSGRP is evaluated through NS-2 simulation.\n\n\nOriginality/value\nThe simulation results show the delay of the proposed method is 92% less than PRISM approach and the overhead of the proposed TSGRP approach is 61% less than PRISM approach.\n","PeriodicalId":210948,"journal":{"name":"Int. J. Pervasive Comput. Commun.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":"{\"title\":\"Trusted Secure Geographic Routing Protocol: outsider attack detection in mobile ad hoc networks by adopting trusted secure geographic routing protocol\",\"authors\":\"Francis H. Shajin, P. Rajesh\",\"doi\":\"10.1108/ijpcc-09-2020-0136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to evaluate the direct trust value for each node and calculate the trust value of all nodes satisfying the condition and update the trust value and value each trust update interval for a secure and efficient communication between sender and destination node. Hence, a Trusted Secure Geographic Routing Protocol (TSGRP) has been proposed for detecting attackers (presence of the hacker), considering the trust value for a node produced by combining the location trusted information and the direct trusted information.\\n\\n\\nDesign/methodology/approach\\nAmelioration in the research studies related to mobile ad hoc networks (MANETs) and wireless sensor networks has shown greater concern in the presence of malicious nodes, due to which the delivery percentage in any given network can degrade to a larger extent, and hence make the network less reliable and more vulnerable to security.\\n\\n\\nFindings\\nTSGRP has outperformed the conventional protocols for detecting attacks in MANET. TSGRP is establishing a trust-based secure communication between the sender and destination node. The evaluated direct trust value is used after the transmission of route-request and route-reply packets, to evaluate the direct trust value of each node and a secure path is established between the sender and the destination node. The effectiveness of the proposed TSGRP is evaluated through NS-2 simulation.\\n\\n\\nOriginality/value\\nThe simulation results show the delay of the proposed method is 92% less than PRISM approach and the overhead of the proposed TSGRP approach is 61% less than PRISM approach.\\n\",\"PeriodicalId\":210948,\"journal\":{\"name\":\"Int. J. Pervasive Comput. Commun.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"143\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Pervasive Comput. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-09-2020-0136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Pervasive Comput. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-09-2020-0136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trusted Secure Geographic Routing Protocol: outsider attack detection in mobile ad hoc networks by adopting trusted secure geographic routing protocol
Purpose
This study aims to evaluate the direct trust value for each node and calculate the trust value of all nodes satisfying the condition and update the trust value and value each trust update interval for a secure and efficient communication between sender and destination node. Hence, a Trusted Secure Geographic Routing Protocol (TSGRP) has been proposed for detecting attackers (presence of the hacker), considering the trust value for a node produced by combining the location trusted information and the direct trusted information.
Design/methodology/approach
Amelioration in the research studies related to mobile ad hoc networks (MANETs) and wireless sensor networks has shown greater concern in the presence of malicious nodes, due to which the delivery percentage in any given network can degrade to a larger extent, and hence make the network less reliable and more vulnerable to security.
Findings
TSGRP has outperformed the conventional protocols for detecting attacks in MANET. TSGRP is establishing a trust-based secure communication between the sender and destination node. The evaluated direct trust value is used after the transmission of route-request and route-reply packets, to evaluate the direct trust value of each node and a secure path is established between the sender and the destination node. The effectiveness of the proposed TSGRP is evaluated through NS-2 simulation.
Originality/value
The simulation results show the delay of the proposed method is 92% less than PRISM approach and the overhead of the proposed TSGRP approach is 61% less than PRISM approach.