GC-IMS数据的批量校正

L. Fernandez, Arnau Blanco, C. Mallafré-Muro, S. Marco
{"title":"GC-IMS数据的批量校正","authors":"L. Fernandez, Arnau Blanco, C. Mallafré-Muro, S. Marco","doi":"10.1109/ISOEN54820.2022.9789646","DOIUrl":null,"url":null,"abstract":"Gas Chromatography Ion Mobility Spectrometry (GC-IMS) is a fast, non-expensive analytical technique that allows obtaining relevant chemical information from vapor mixtures. However, the technique presents some difficulties that should be solved to ensure reliable and reproducible results, namely: 1) data exhibits simultaneously high dimensionality and sparsity on their chemical information content, 2) data samples must usually be corrected even within a batch because of baseline and misalignment problems, 3) additional data corrections must be performed to prevent from chemical fingerprinting variations among batches. In this work, we have acquired data from two different batches (A and B) of ketone mixtures (2-Butanone, 2-Pentanone, 2-Hexanone, and 2-Heptanone). The analytical method for batch A and B was the same, except for the value of carrier gas flow parameter, which was approximately doubled for batch B. We have addressed problems 1) and 2) independently for each batch, obtaining as a result two peak tables. 3). Common peaks present in batches A and B were found after scaling the retention time axis of batch B and perform k-medoids clustering. Using this information, test data from batch B has been corrected through a linear transformation.","PeriodicalId":427373,"journal":{"name":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards batch correction for GC-IMS data\",\"authors\":\"L. Fernandez, Arnau Blanco, C. Mallafré-Muro, S. Marco\",\"doi\":\"10.1109/ISOEN54820.2022.9789646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas Chromatography Ion Mobility Spectrometry (GC-IMS) is a fast, non-expensive analytical technique that allows obtaining relevant chemical information from vapor mixtures. However, the technique presents some difficulties that should be solved to ensure reliable and reproducible results, namely: 1) data exhibits simultaneously high dimensionality and sparsity on their chemical information content, 2) data samples must usually be corrected even within a batch because of baseline and misalignment problems, 3) additional data corrections must be performed to prevent from chemical fingerprinting variations among batches. In this work, we have acquired data from two different batches (A and B) of ketone mixtures (2-Butanone, 2-Pentanone, 2-Hexanone, and 2-Heptanone). The analytical method for batch A and B was the same, except for the value of carrier gas flow parameter, which was approximately doubled for batch B. We have addressed problems 1) and 2) independently for each batch, obtaining as a result two peak tables. 3). Common peaks present in batches A and B were found after scaling the retention time axis of batch B and perform k-medoids clustering. Using this information, test data from batch B has been corrected through a linear transformation.\",\"PeriodicalId\":427373,\"journal\":{\"name\":\"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOEN54820.2022.9789646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOEN54820.2022.9789646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气相色谱-离子迁移谱法(GC-IMS)是一种快速、廉价的分析技术,可以从蒸汽混合物中获得相关的化学信息。然而,该技术提出了一些需要解决的困难,以确保可靠和可重复的结果,即:1)数据在其化学信息内容上同时表现出高维性和稀疏性;2)由于基线和不校准问题,即使在一批内数据样本通常也必须进行校正;3)必须进行额外的数据校正以防止批次之间的化学指纹变化。在这项工作中,我们获得了两个不同批次(A和B)的酮混合物(2-丁酮、2-戊酮、2-己酮和2-庚酮)的数据。A批和B批的分析方法相同,只是载气流量参数的值在B批中大约增加了一倍。我们对每个批次分别解决了问题1)和2),得到了两个峰表。3).缩放B批的保留时间轴,进行k- medium聚类,发现A批和B批存在共同的峰。利用这些信息,B批的测试数据通过线性变换进行了修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards batch correction for GC-IMS data
Gas Chromatography Ion Mobility Spectrometry (GC-IMS) is a fast, non-expensive analytical technique that allows obtaining relevant chemical information from vapor mixtures. However, the technique presents some difficulties that should be solved to ensure reliable and reproducible results, namely: 1) data exhibits simultaneously high dimensionality and sparsity on their chemical information content, 2) data samples must usually be corrected even within a batch because of baseline and misalignment problems, 3) additional data corrections must be performed to prevent from chemical fingerprinting variations among batches. In this work, we have acquired data from two different batches (A and B) of ketone mixtures (2-Butanone, 2-Pentanone, 2-Hexanone, and 2-Heptanone). The analytical method for batch A and B was the same, except for the value of carrier gas flow parameter, which was approximately doubled for batch B. We have addressed problems 1) and 2) independently for each batch, obtaining as a result two peak tables. 3). Common peaks present in batches A and B were found after scaling the retention time axis of batch B and perform k-medoids clustering. Using this information, test data from batch B has been corrected through a linear transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信