{"title":"基于支持向量机的平假名和片假名识别算法与神经网络分割","authors":"Piotr Szymkowski, K. Saeed, N. Nishiuchi","doi":"10.1145/3406971.3406978","DOIUrl":null,"url":null,"abstract":"A Japanese writing system, unlike the European system, is complex. It contains three types of signs: hiragana, katakana and Kanji. For daily use, more than 2000 characters are used, and each symbol can consist of 6 or more strokes. That is why it seems possible to recognise each sign by using a similar approach to fingerprint recognition. Authors are using the minutiae-finding algorithm to find three types of characteristic points. For preprocessing and classification, machine learning algorithms were used. The presented system uses the image of a single sign as an input.","PeriodicalId":111905,"journal":{"name":"Proceedings of the 4th International Conference on Graphics and Signal Processing","volume":"24 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SVM Based Hiragana and Katakana Recognition Algorithm with Neural Network Based Segmentation\",\"authors\":\"Piotr Szymkowski, K. Saeed, N. Nishiuchi\",\"doi\":\"10.1145/3406971.3406978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Japanese writing system, unlike the European system, is complex. It contains three types of signs: hiragana, katakana and Kanji. For daily use, more than 2000 characters are used, and each symbol can consist of 6 or more strokes. That is why it seems possible to recognise each sign by using a similar approach to fingerprint recognition. Authors are using the minutiae-finding algorithm to find three types of characteristic points. For preprocessing and classification, machine learning algorithms were used. The presented system uses the image of a single sign as an input.\",\"PeriodicalId\":111905,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Graphics and Signal Processing\",\"volume\":\"24 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Graphics and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406971.3406978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406971.3406978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SVM Based Hiragana and Katakana Recognition Algorithm with Neural Network Based Segmentation
A Japanese writing system, unlike the European system, is complex. It contains three types of signs: hiragana, katakana and Kanji. For daily use, more than 2000 characters are used, and each symbol can consist of 6 or more strokes. That is why it seems possible to recognise each sign by using a similar approach to fingerprint recognition. Authors are using the minutiae-finding algorithm to find three types of characteristic points. For preprocessing and classification, machine learning algorithms were used. The presented system uses the image of a single sign as an input.