基于支持向量机的平假名和片假名识别算法与神经网络分割

Piotr Szymkowski, K. Saeed, N. Nishiuchi
{"title":"基于支持向量机的平假名和片假名识别算法与神经网络分割","authors":"Piotr Szymkowski, K. Saeed, N. Nishiuchi","doi":"10.1145/3406971.3406978","DOIUrl":null,"url":null,"abstract":"A Japanese writing system, unlike the European system, is complex. It contains three types of signs: hiragana, katakana and Kanji. For daily use, more than 2000 characters are used, and each symbol can consist of 6 or more strokes. That is why it seems possible to recognise each sign by using a similar approach to fingerprint recognition. Authors are using the minutiae-finding algorithm to find three types of characteristic points. For preprocessing and classification, machine learning algorithms were used. The presented system uses the image of a single sign as an input.","PeriodicalId":111905,"journal":{"name":"Proceedings of the 4th International Conference on Graphics and Signal Processing","volume":"24 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SVM Based Hiragana and Katakana Recognition Algorithm with Neural Network Based Segmentation\",\"authors\":\"Piotr Szymkowski, K. Saeed, N. Nishiuchi\",\"doi\":\"10.1145/3406971.3406978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Japanese writing system, unlike the European system, is complex. It contains three types of signs: hiragana, katakana and Kanji. For daily use, more than 2000 characters are used, and each symbol can consist of 6 or more strokes. That is why it seems possible to recognise each sign by using a similar approach to fingerprint recognition. Authors are using the minutiae-finding algorithm to find three types of characteristic points. For preprocessing and classification, machine learning algorithms were used. The presented system uses the image of a single sign as an input.\",\"PeriodicalId\":111905,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Graphics and Signal Processing\",\"volume\":\"24 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Graphics and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406971.3406978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406971.3406978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与欧洲的书写系统不同,日本的书写系统很复杂。它包含三种类型的标志:平假名、片假名和汉字。日常使用的汉字超过2000个,每个符号可以由6个或更多的笔画组成。这就是为什么用类似于指纹识别的方法来识别每个手势似乎是可能的。作者使用极小值查找算法来查找三种类型的特征点。预处理和分类使用机器学习算法。该系统使用单个标志的图像作为输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVM Based Hiragana and Katakana Recognition Algorithm with Neural Network Based Segmentation
A Japanese writing system, unlike the European system, is complex. It contains three types of signs: hiragana, katakana and Kanji. For daily use, more than 2000 characters are used, and each symbol can consist of 6 or more strokes. That is why it seems possible to recognise each sign by using a similar approach to fingerprint recognition. Authors are using the minutiae-finding algorithm to find three types of characteristic points. For preprocessing and classification, machine learning algorithms were used. The presented system uses the image of a single sign as an input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信