验证了正维多项式系统实解的误差界

Zhengfeng Yang, L. Zhi, Yijun Zhu
{"title":"验证了正维多项式系统实解的误差界","authors":"Zhengfeng Yang, L. Zhi, Yijun Zhu","doi":"10.1145/2465506.2465951","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two algorithms for verifying the existence of real solutions of positive-dimensional polynomial systems. The first one is based on the critical point method and the homotopy continuation method. It targets for verifying the existence of real roots on each connected component of an algebraic variety V ∩ Rn defined by polynomial equations. The second one is based on the low-rank moment matrix completion method and aims for verifying the existence of at least one real roots on V ∩ Rn. Combined both algorithms with the verification algorithms for zero-dimensional polynomial systems, we are able to find verified real solutions of positive-dimensional polynomial systems very efficiently for a large set of examples.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"152 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Verified error bounds for real solutions of positive-dimensional polynomial systems\",\"authors\":\"Zhengfeng Yang, L. Zhi, Yijun Zhu\",\"doi\":\"10.1145/2465506.2465951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two algorithms for verifying the existence of real solutions of positive-dimensional polynomial systems. The first one is based on the critical point method and the homotopy continuation method. It targets for verifying the existence of real roots on each connected component of an algebraic variety V ∩ Rn defined by polynomial equations. The second one is based on the low-rank moment matrix completion method and aims for verifying the existence of at least one real roots on V ∩ Rn. Combined both algorithms with the verification algorithms for zero-dimensional polynomial systems, we are able to find verified real solutions of positive-dimensional polynomial systems very efficiently for a large set of examples.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"152 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文给出了验证正维多项式系统实解存在性的两种算法。第一种方法是基于临界点法和同伦延拓法。它的目标是验证由多项式方程定义的代数变量V∩Rn的每个连通分量上的实根的存在性。第二种是基于低秩矩矩阵补全方法,目的是验证V∩Rn上至少存在一个实根。将这两种算法与零维多项式系统的验证算法相结合,对于大量的实例,我们能够非常有效地找到正维多项式系统的验证实解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verified error bounds for real solutions of positive-dimensional polynomial systems
In this paper, we propose two algorithms for verifying the existence of real solutions of positive-dimensional polynomial systems. The first one is based on the critical point method and the homotopy continuation method. It targets for verifying the existence of real roots on each connected component of an algebraic variety V ∩ Rn defined by polynomial equations. The second one is based on the low-rank moment matrix completion method and aims for verifying the existence of at least one real roots on V ∩ Rn. Combined both algorithms with the verification algorithms for zero-dimensional polynomial systems, we are able to find verified real solutions of positive-dimensional polynomial systems very efficiently for a large set of examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信