gpgpu软误差检测技术评价

D. Sabena, M. Reorda, L. Sterpone, P. Rech, L. Carro
{"title":"gpgpu软误差检测技术评价","authors":"D. Sabena, M. Reorda, L. Sterpone, P. Rech, L. Carro","doi":"10.1109/IDT.2013.6727092","DOIUrl":null,"url":null,"abstract":"Recently, General Purpose Graphic Processing Units (GPGPUs) have begun to be preferred to CPUs for several computationally intensive applications, not necessarily related to computer graphics. However, due to their complexity GPGPUs also show a relatively high sensitivity to soft errors. Hence, there is some interest in devising and applying software techniques able to exploit their computational power by just acting on the executed code. In this paper we report some preliminary results obtained by applying two different software redundancy techniques aimed at soft-error detection; these techniques are completely algorithm independent, and have been applied on a sample application running on a Commercial-Off-The-Shelf GPGPU. The results have been gathered resorting to a neutron testing campaign. Some experimental results, explaining the capabilities of the methods, are presented and commented.","PeriodicalId":446826,"journal":{"name":"2013 8th IEEE Design and Test Symposium","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On the evaluation of soft-errors detection techniques for GPGPUs\",\"authors\":\"D. Sabena, M. Reorda, L. Sterpone, P. Rech, L. Carro\",\"doi\":\"10.1109/IDT.2013.6727092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, General Purpose Graphic Processing Units (GPGPUs) have begun to be preferred to CPUs for several computationally intensive applications, not necessarily related to computer graphics. However, due to their complexity GPGPUs also show a relatively high sensitivity to soft errors. Hence, there is some interest in devising and applying software techniques able to exploit their computational power by just acting on the executed code. In this paper we report some preliminary results obtained by applying two different software redundancy techniques aimed at soft-error detection; these techniques are completely algorithm independent, and have been applied on a sample application running on a Commercial-Off-The-Shelf GPGPU. The results have been gathered resorting to a neutron testing campaign. Some experimental results, explaining the capabilities of the methods, are presented and commented.\",\"PeriodicalId\":446826,\"journal\":{\"name\":\"2013 8th IEEE Design and Test Symposium\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th IEEE Design and Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2013.6727092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th IEEE Design and Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2013.6727092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

最近,通用图形处理单元(General Purpose Graphic Processing unit, gpgpu)已经开始在一些计算密集型的应用中比cpu更受青睐,这些应用不一定与计算机图形学相关。然而,由于其复杂性,gpgpu对软误差也表现出相对较高的敏感性。因此,人们对设计和应用软件技术很感兴趣,这些软件技术能够通过仅作用于已执行的代码来利用它们的计算能力。本文报告了采用两种不同的软件冗余技术进行软错误检测的初步结果;这些技术是完全独立于算法的,并已应用于运行在商用现成GPGPU上的示例应用程序。结果是通过中子测试活动收集的。给出了一些实验结果,说明了该方法的能力,并对其进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the evaluation of soft-errors detection techniques for GPGPUs
Recently, General Purpose Graphic Processing Units (GPGPUs) have begun to be preferred to CPUs for several computationally intensive applications, not necessarily related to computer graphics. However, due to their complexity GPGPUs also show a relatively high sensitivity to soft errors. Hence, there is some interest in devising and applying software techniques able to exploit their computational power by just acting on the executed code. In this paper we report some preliminary results obtained by applying two different software redundancy techniques aimed at soft-error detection; these techniques are completely algorithm independent, and have been applied on a sample application running on a Commercial-Off-The-Shelf GPGPU. The results have been gathered resorting to a neutron testing campaign. Some experimental results, explaining the capabilities of the methods, are presented and commented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信