鲁棒面部情绪识别的深度卷积神经网络

Andrinandrasana David Rasamoelina, F. Adjailia, P. Sinčák
{"title":"鲁棒面部情绪识别的深度卷积神经网络","authors":"Andrinandrasana David Rasamoelina, F. Adjailia, P. Sinčák","doi":"10.1109/INISTA.2019.8778282","DOIUrl":null,"url":null,"abstract":"Emotion and the ability to understand them are considered a channel of non-verbal communication. It is an important factor to achieve a smooth and yet robust interaction between machines and humans. In this paper, we review CNN-based methods for facial emotion recognition and we propose a new cutting edge deep learning approach to classify facial expressions from pictures. To guarantee the efficacy of the method, we used multiple datasets: FER2013, AffectNet, RaFD, and KDEF. We obtained results respectively 82.3%, 76.79%, 78.58 %, and 77.08 %. Those results surpassed the current state of the art. We also compared our achieved measurements to available APIs for facial emotion recognition.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Convolutional Neural Network for Robust Facial Emotion Recognition\",\"authors\":\"Andrinandrasana David Rasamoelina, F. Adjailia, P. Sinčák\",\"doi\":\"10.1109/INISTA.2019.8778282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion and the ability to understand them are considered a channel of non-verbal communication. It is an important factor to achieve a smooth and yet robust interaction between machines and humans. In this paper, we review CNN-based methods for facial emotion recognition and we propose a new cutting edge deep learning approach to classify facial expressions from pictures. To guarantee the efficacy of the method, we used multiple datasets: FER2013, AffectNet, RaFD, and KDEF. We obtained results respectively 82.3%, 76.79%, 78.58 %, and 77.08 %. Those results surpassed the current state of the art. We also compared our achieved measurements to available APIs for facial emotion recognition.\",\"PeriodicalId\":262143,\"journal\":{\"name\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2019.8778282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

情感和理解它们的能力被认为是非语言交流的渠道。这是实现机器与人之间流畅而稳健的交互的重要因素。在本文中,我们回顾了基于cnn的面部情绪识别方法,并提出了一种新的前沿深度学习方法来从图片中分类面部表情。为了保证方法的有效性,我们使用了多个数据集:FER2013、AffectNet、RaFD和KDEF。结果分别为82.3%、76.79%、78.58%和77.08%。这些结果超过了目前的技术水平。我们还将我们获得的测量结果与可用的面部情绪识别api进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Convolutional Neural Network for Robust Facial Emotion Recognition
Emotion and the ability to understand them are considered a channel of non-verbal communication. It is an important factor to achieve a smooth and yet robust interaction between machines and humans. In this paper, we review CNN-based methods for facial emotion recognition and we propose a new cutting edge deep learning approach to classify facial expressions from pictures. To guarantee the efficacy of the method, we used multiple datasets: FER2013, AffectNet, RaFD, and KDEF. We obtained results respectively 82.3%, 76.79%, 78.58 %, and 77.08 %. Those results surpassed the current state of the art. We also compared our achieved measurements to available APIs for facial emotion recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信