无循环随机有向图的最优节点访问

T. Bountourelis, S. Reveliotis
{"title":"无循环随机有向图的最优节点访问","authors":"T. Bountourelis, S. Reveliotis","doi":"10.1109/WODES.2006.382394","DOIUrl":null,"url":null,"abstract":"Given a stochastic, acyclic, connected digraph with a single source node and a control agent that repetitively traverses this graph, each time starting from the source node, we want to define a control policy that will enable this agent to visit each of the graph terminal nodes a prespecified number of times, while minimizing the expected number of the graph traversals. We first formulate this problem as a specially structured discrete time Markov decision process, and we subsequently develop an asymptotically optimal randomized policy of polynomial complexity with respect to the problem size","PeriodicalId":285315,"journal":{"name":"2006 8th International Workshop on Discrete Event Systems","volume":"13 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal node visitation in acyclic stochastic digraphs\",\"authors\":\"T. Bountourelis, S. Reveliotis\",\"doi\":\"10.1109/WODES.2006.382394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a stochastic, acyclic, connected digraph with a single source node and a control agent that repetitively traverses this graph, each time starting from the source node, we want to define a control policy that will enable this agent to visit each of the graph terminal nodes a prespecified number of times, while minimizing the expected number of the graph traversals. We first formulate this problem as a specially structured discrete time Markov decision process, and we subsequently develop an asymptotically optimal randomized policy of polynomial complexity with respect to the problem size\",\"PeriodicalId\":285315,\"journal\":{\"name\":\"2006 8th International Workshop on Discrete Event Systems\",\"volume\":\"13 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th International Workshop on Discrete Event Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2006.382394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th International Workshop on Discrete Event Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2006.382394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给定一个随机的、无环的、连接的有向图,它有一个单源节点和一个重复遍历该图的控制代理,每次从源节点开始,我们想要定义一个控制策略,使该代理能够访问每个图终端节点预先指定的次数,同时最小化图遍历的预期次数。我们首先将这个问题表述为一个特殊结构的离散时间马尔可夫决策过程,然后我们开发了一个相对于问题大小的多项式复杂度的渐近最优随机化策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal node visitation in acyclic stochastic digraphs
Given a stochastic, acyclic, connected digraph with a single source node and a control agent that repetitively traverses this graph, each time starting from the source node, we want to define a control policy that will enable this agent to visit each of the graph terminal nodes a prespecified number of times, while minimizing the expected number of the graph traversals. We first formulate this problem as a specially structured discrete time Markov decision process, and we subsequently develop an asymptotically optimal randomized policy of polynomial complexity with respect to the problem size
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信