具有观测器的记忆神经网络状态估计

Moxuan Guo, Song Zhu
{"title":"具有观测器的记忆神经网络状态估计","authors":"Moxuan Guo, Song Zhu","doi":"10.1109/icaci55529.2022.9837560","DOIUrl":null,"url":null,"abstract":"This work explores state estimation considering Memristive Neural Networks (MNNs) with time-varying delays and bounded disturbances. Some sufficient conditions for algebraic criteria are derived from achieving exponential stability. Establishing two kinds of observers defined by two matrix multiplications, Hadamard product and matmul product, we obtain the estimation of state solutions such that the error system stability. Finally, the availability of the results is verified via a numerical simulation.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"829 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Estimation for Memristive Neural Networks with Observer\",\"authors\":\"Moxuan Guo, Song Zhu\",\"doi\":\"10.1109/icaci55529.2022.9837560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores state estimation considering Memristive Neural Networks (MNNs) with time-varying delays and bounded disturbances. Some sufficient conditions for algebraic criteria are derived from achieving exponential stability. Establishing two kinds of observers defined by two matrix multiplications, Hadamard product and matmul product, we obtain the estimation of state solutions such that the error system stability. Finally, the availability of the results is verified via a numerical simulation.\",\"PeriodicalId\":412347,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"829 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaci55529.2022.9837560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作探讨了考虑时变延迟和有界干扰的记忆神经网络(MNNs)的状态估计。通过实现指数稳定性,得到了代数判据的几个充分条件。建立由两个矩阵乘法定义的两类观测器,即Hadamard积和matl积,得到了使误差系统稳定的状态解估计。最后,通过数值模拟验证了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Estimation for Memristive Neural Networks with Observer
This work explores state estimation considering Memristive Neural Networks (MNNs) with time-varying delays and bounded disturbances. Some sufficient conditions for algebraic criteria are derived from achieving exponential stability. Establishing two kinds of observers defined by two matrix multiplications, Hadamard product and matmul product, we obtain the estimation of state solutions such that the error system stability. Finally, the availability of the results is verified via a numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信