时间子采样对视频分类精度和性能的影响

F. Scheidegger, L. Cavigelli, Michael Schaffner, A. Malossi, C. Bekas, L. Benini
{"title":"时间子采样对视频分类精度和性能的影响","authors":"F. Scheidegger, L. Cavigelli, Michael Schaffner, A. Malossi, C. Bekas, L. Benini","doi":"10.23919/EUSIPCO.2017.8081357","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate three state-of-the-art neural-network-based approaches for large-scale video classification, where the computational efficiency of the inference step is of particular importance due to the ever increasing amount of data throughput for video streams. Our evaluation focuses on finding good efficiency vs. accuracy tradeoffs by evaluating different network configurations and parameterizations. In particular, we investigate the use of different temporal subsampling strategies, and show that they can be used to effectively trade computational workload against classification accuracy. Using a subset of the YouTube-8M dataset, we demonstrate that workload reductions in the order of 10×, 50× and 100× can be achieved with accuracy reductions of only 1.3%, 6.2% and 10.8%, respectively. Our results show that temporal subsampling is a simple and generic approach that behaves consistently over the considered classification pipelines and which does not require retraining of the underlying networks.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Impact of temporal subsampling on accuracy and performance in practical video classification\",\"authors\":\"F. Scheidegger, L. Cavigelli, Michael Schaffner, A. Malossi, C. Bekas, L. Benini\",\"doi\":\"10.23919/EUSIPCO.2017.8081357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we evaluate three state-of-the-art neural-network-based approaches for large-scale video classification, where the computational efficiency of the inference step is of particular importance due to the ever increasing amount of data throughput for video streams. Our evaluation focuses on finding good efficiency vs. accuracy tradeoffs by evaluating different network configurations and parameterizations. In particular, we investigate the use of different temporal subsampling strategies, and show that they can be used to effectively trade computational workload against classification accuracy. Using a subset of the YouTube-8M dataset, we demonstrate that workload reductions in the order of 10×, 50× and 100× can be achieved with accuracy reductions of only 1.3%, 6.2% and 10.8%, respectively. Our results show that temporal subsampling is a simple and generic approach that behaves consistently over the considered classification pipelines and which does not require retraining of the underlying networks.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们评估了三种最先进的基于神经网络的大规模视频分类方法,其中,由于视频流的数据吞吐量不断增加,推理步骤的计算效率尤为重要。我们的评估侧重于通过评估不同的网络配置和参数化来找到良好的效率与准确性之间的权衡。特别地,我们研究了不同时间子采样策略的使用,并表明它们可以有效地使用计算工作量和分类精度进行权衡。使用YouTube-8M数据集的一个子集,我们证明可以实现10倍、50倍和100倍的工作量减少,而准确性分别仅降低1.3%、6.2%和10.8%。我们的结果表明,时间子抽样是一种简单而通用的方法,在考虑的分类管道上表现一致,并且不需要对底层网络进行重新训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of temporal subsampling on accuracy and performance in practical video classification
In this paper we evaluate three state-of-the-art neural-network-based approaches for large-scale video classification, where the computational efficiency of the inference step is of particular importance due to the ever increasing amount of data throughput for video streams. Our evaluation focuses on finding good efficiency vs. accuracy tradeoffs by evaluating different network configurations and parameterizations. In particular, we investigate the use of different temporal subsampling strategies, and show that they can be used to effectively trade computational workload against classification accuracy. Using a subset of the YouTube-8M dataset, we demonstrate that workload reductions in the order of 10×, 50× and 100× can be achieved with accuracy reductions of only 1.3%, 6.2% and 10.8%, respectively. Our results show that temporal subsampling is a simple and generic approach that behaves consistently over the considered classification pipelines and which does not require retraining of the underlying networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信