F. Scheidegger, L. Cavigelli, Michael Schaffner, A. Malossi, C. Bekas, L. Benini
{"title":"时间子采样对视频分类精度和性能的影响","authors":"F. Scheidegger, L. Cavigelli, Michael Schaffner, A. Malossi, C. Bekas, L. Benini","doi":"10.23919/EUSIPCO.2017.8081357","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate three state-of-the-art neural-network-based approaches for large-scale video classification, where the computational efficiency of the inference step is of particular importance due to the ever increasing amount of data throughput for video streams. Our evaluation focuses on finding good efficiency vs. accuracy tradeoffs by evaluating different network configurations and parameterizations. In particular, we investigate the use of different temporal subsampling strategies, and show that they can be used to effectively trade computational workload against classification accuracy. Using a subset of the YouTube-8M dataset, we demonstrate that workload reductions in the order of 10×, 50× and 100× can be achieved with accuracy reductions of only 1.3%, 6.2% and 10.8%, respectively. Our results show that temporal subsampling is a simple and generic approach that behaves consistently over the considered classification pipelines and which does not require retraining of the underlying networks.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Impact of temporal subsampling on accuracy and performance in practical video classification\",\"authors\":\"F. Scheidegger, L. Cavigelli, Michael Schaffner, A. Malossi, C. Bekas, L. Benini\",\"doi\":\"10.23919/EUSIPCO.2017.8081357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we evaluate three state-of-the-art neural-network-based approaches for large-scale video classification, where the computational efficiency of the inference step is of particular importance due to the ever increasing amount of data throughput for video streams. Our evaluation focuses on finding good efficiency vs. accuracy tradeoffs by evaluating different network configurations and parameterizations. In particular, we investigate the use of different temporal subsampling strategies, and show that they can be used to effectively trade computational workload against classification accuracy. Using a subset of the YouTube-8M dataset, we demonstrate that workload reductions in the order of 10×, 50× and 100× can be achieved with accuracy reductions of only 1.3%, 6.2% and 10.8%, respectively. Our results show that temporal subsampling is a simple and generic approach that behaves consistently over the considered classification pipelines and which does not require retraining of the underlying networks.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of temporal subsampling on accuracy and performance in practical video classification
In this paper we evaluate three state-of-the-art neural-network-based approaches for large-scale video classification, where the computational efficiency of the inference step is of particular importance due to the ever increasing amount of data throughput for video streams. Our evaluation focuses on finding good efficiency vs. accuracy tradeoffs by evaluating different network configurations and parameterizations. In particular, we investigate the use of different temporal subsampling strategies, and show that they can be used to effectively trade computational workload against classification accuracy. Using a subset of the YouTube-8M dataset, we demonstrate that workload reductions in the order of 10×, 50× and 100× can be achieved with accuracy reductions of only 1.3%, 6.2% and 10.8%, respectively. Our results show that temporal subsampling is a simple and generic approach that behaves consistently over the considered classification pipelines and which does not require retraining of the underlying networks.