面向视频内容语义索引的连续行为知识空间

F. Souvannavong, B. Huet
{"title":"面向视频内容语义索引的连续行为知识空间","authors":"F. Souvannavong, B. Huet","doi":"10.1109/ICIF.2006.301568","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new method for fusing classifier outputs. It is inspired from the behavior knowledge space model with the extra ability to work on continuous input values. This property allows to deal with heterogeneous classifiers and in particular it does not require to make any decision at the classifier level. We propose to build a set of units, defining a knowledge space, with respect to classifier output spaces. A new sample is then classified with respect to the unit it belongs to and some statistics computed on each unit. Several methods to create cells and make the final decision are proposed and compared to k-nearest neighbor and decision tree schemas. The evaluation is conducted on the task of video content retrieval which will reveal the efficiency of our approach","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuous Behaviour Knowledge Space For Semantic Indexing of Video Content\",\"authors\":\"F. Souvannavong, B. Huet\",\"doi\":\"10.1109/ICIF.2006.301568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new method for fusing classifier outputs. It is inspired from the behavior knowledge space model with the extra ability to work on continuous input values. This property allows to deal with heterogeneous classifiers and in particular it does not require to make any decision at the classifier level. We propose to build a set of units, defining a knowledge space, with respect to classifier output spaces. A new sample is then classified with respect to the unit it belongs to and some statistics computed on each unit. Several methods to create cells and make the final decision are proposed and compared to k-nearest neighbor and decision tree schemas. The evaluation is conducted on the task of video content retrieval which will reveal the efficiency of our approach\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种新的分类器输出融合方法。它受行为知识空间模型的启发,具有处理连续输入值的额外能力。此属性允许处理异构分类器,特别是它不需要在分类器级别做出任何决策。我们建议建立一组单元,定义一个知识空间,相对于分类器输出空间。然后,一个新的样本就其所属的单位进行分类,并在每个单位上计算一些统计数据。提出了几种创建单元格并做出最终决策的方法,并与k近邻模式和决策树模式进行了比较。通过对视频内容检索任务的评价,可以看出我们方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Behaviour Knowledge Space For Semantic Indexing of Video Content
In this paper we introduce a new method for fusing classifier outputs. It is inspired from the behavior knowledge space model with the extra ability to work on continuous input values. This property allows to deal with heterogeneous classifiers and in particular it does not require to make any decision at the classifier level. We propose to build a set of units, defining a knowledge space, with respect to classifier output spaces. A new sample is then classified with respect to the unit it belongs to and some statistics computed on each unit. Several methods to create cells and make the final decision are proposed and compared to k-nearest neighbor and decision tree schemas. The evaluation is conducted on the task of video content retrieval which will reveal the efficiency of our approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信