{"title":"用于口语理解的深度四元数神经网络","authors":"Titouan Parcollet, Mohamed Morchid, G. Linarès","doi":"10.1109/ASRU.2017.8268978","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNN) received a great interest from researchers due to their capability to construct robust abstract representations of heterogeneous documents in a latent subspace. Nonetheless, mere real-valued deep neural networks require an appropriate adaptation, such as the convolution process, to capture latent relations between input features. Moreover, real-valued deep neural networks reveal little in way of document internal dependencies, by only considering words or topics contained in the document as an isolate basic element. Quaternion-valued multi-layer per-ceptrons (QMLP), and autoencoders (QAE) have been introduced to capture such latent dependencies, alongside to represent multidimensional data. Nonetheless, a three-layered neural network does not benefit from the high abstraction capability of DNNs. The paper proposes first to extend the hyper-complex algebra to deep neural networks (QDNN) and, then, introduces pre-trained deep quaternion neural networks (QDNN-AE) with dedicated quaternion encoder-decoders (QAE). The experiments conduced on a theme identification task of spoken dialogues from the DECODA data set show, inter alia, that the QDNN-AE reaches a promising gain of 2.2% compared to the standard real-valued DNN-AE.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Deep quaternion neural networks for spoken language understanding\",\"authors\":\"Titouan Parcollet, Mohamed Morchid, G. Linarès\",\"doi\":\"10.1109/ASRU.2017.8268978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNN) received a great interest from researchers due to their capability to construct robust abstract representations of heterogeneous documents in a latent subspace. Nonetheless, mere real-valued deep neural networks require an appropriate adaptation, such as the convolution process, to capture latent relations between input features. Moreover, real-valued deep neural networks reveal little in way of document internal dependencies, by only considering words or topics contained in the document as an isolate basic element. Quaternion-valued multi-layer per-ceptrons (QMLP), and autoencoders (QAE) have been introduced to capture such latent dependencies, alongside to represent multidimensional data. Nonetheless, a three-layered neural network does not benefit from the high abstraction capability of DNNs. The paper proposes first to extend the hyper-complex algebra to deep neural networks (QDNN) and, then, introduces pre-trained deep quaternion neural networks (QDNN-AE) with dedicated quaternion encoder-decoders (QAE). The experiments conduced on a theme identification task of spoken dialogues from the DECODA data set show, inter alia, that the QDNN-AE reaches a promising gain of 2.2% compared to the standard real-valued DNN-AE.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep quaternion neural networks for spoken language understanding
Deep Neural Networks (DNN) received a great interest from researchers due to their capability to construct robust abstract representations of heterogeneous documents in a latent subspace. Nonetheless, mere real-valued deep neural networks require an appropriate adaptation, such as the convolution process, to capture latent relations between input features. Moreover, real-valued deep neural networks reveal little in way of document internal dependencies, by only considering words or topics contained in the document as an isolate basic element. Quaternion-valued multi-layer per-ceptrons (QMLP), and autoencoders (QAE) have been introduced to capture such latent dependencies, alongside to represent multidimensional data. Nonetheless, a three-layered neural network does not benefit from the high abstraction capability of DNNs. The paper proposes first to extend the hyper-complex algebra to deep neural networks (QDNN) and, then, introduces pre-trained deep quaternion neural networks (QDNN-AE) with dedicated quaternion encoder-decoders (QAE). The experiments conduced on a theme identification task of spoken dialogues from the DECODA data set show, inter alia, that the QDNN-AE reaches a promising gain of 2.2% compared to the standard real-valued DNN-AE.