用于口语理解的深度四元数神经网络

Titouan Parcollet, Mohamed Morchid, G. Linarès
{"title":"用于口语理解的深度四元数神经网络","authors":"Titouan Parcollet, Mohamed Morchid, G. Linarès","doi":"10.1109/ASRU.2017.8268978","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNN) received a great interest from researchers due to their capability to construct robust abstract representations of heterogeneous documents in a latent subspace. Nonetheless, mere real-valued deep neural networks require an appropriate adaptation, such as the convolution process, to capture latent relations between input features. Moreover, real-valued deep neural networks reveal little in way of document internal dependencies, by only considering words or topics contained in the document as an isolate basic element. Quaternion-valued multi-layer per-ceptrons (QMLP), and autoencoders (QAE) have been introduced to capture such latent dependencies, alongside to represent multidimensional data. Nonetheless, a three-layered neural network does not benefit from the high abstraction capability of DNNs. The paper proposes first to extend the hyper-complex algebra to deep neural networks (QDNN) and, then, introduces pre-trained deep quaternion neural networks (QDNN-AE) with dedicated quaternion encoder-decoders (QAE). The experiments conduced on a theme identification task of spoken dialogues from the DECODA data set show, inter alia, that the QDNN-AE reaches a promising gain of 2.2% compared to the standard real-valued DNN-AE.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Deep quaternion neural networks for spoken language understanding\",\"authors\":\"Titouan Parcollet, Mohamed Morchid, G. Linarès\",\"doi\":\"10.1109/ASRU.2017.8268978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNN) received a great interest from researchers due to their capability to construct robust abstract representations of heterogeneous documents in a latent subspace. Nonetheless, mere real-valued deep neural networks require an appropriate adaptation, such as the convolution process, to capture latent relations between input features. Moreover, real-valued deep neural networks reveal little in way of document internal dependencies, by only considering words or topics contained in the document as an isolate basic element. Quaternion-valued multi-layer per-ceptrons (QMLP), and autoencoders (QAE) have been introduced to capture such latent dependencies, alongside to represent multidimensional data. Nonetheless, a three-layered neural network does not benefit from the high abstraction capability of DNNs. The paper proposes first to extend the hyper-complex algebra to deep neural networks (QDNN) and, then, introduces pre-trained deep quaternion neural networks (QDNN-AE) with dedicated quaternion encoder-decoders (QAE). The experiments conduced on a theme identification task of spoken dialogues from the DECODA data set show, inter alia, that the QDNN-AE reaches a promising gain of 2.2% compared to the standard real-valued DNN-AE.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

深度神经网络(DNN)由于能够在潜在子空间中构建异构文档的鲁棒抽象表示而受到研究人员的极大兴趣。然而,单纯的实值深度神经网络需要适当的适应,如卷积过程,以捕获输入特征之间的潜在关系。此外,实值深度神经网络仅将文档中包含的单词或主题视为孤立的基本元素,很少揭示文档内部依赖关系。四元数值多层感知器(QMLP)和自编码器(QAE)已经被引入来捕获这些潜在的依赖关系,以及表示多维数据。然而,三层神经网络并不能从深度神经网络的高抽象能力中获益。本文首先提出将超复杂代数扩展到深度神经网络(QDNN),然后引入带有专用四元数编码器(QAE)的预训练深度四元数神经网络(QDNN- ae)。对来自DECODA数据集的口语对话主题识别任务进行的实验表明,与标准实值DNN-AE相比,QDNN-AE达到了2.2%的有希望的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep quaternion neural networks for spoken language understanding
Deep Neural Networks (DNN) received a great interest from researchers due to their capability to construct robust abstract representations of heterogeneous documents in a latent subspace. Nonetheless, mere real-valued deep neural networks require an appropriate adaptation, such as the convolution process, to capture latent relations between input features. Moreover, real-valued deep neural networks reveal little in way of document internal dependencies, by only considering words or topics contained in the document as an isolate basic element. Quaternion-valued multi-layer per-ceptrons (QMLP), and autoencoders (QAE) have been introduced to capture such latent dependencies, alongside to represent multidimensional data. Nonetheless, a three-layered neural network does not benefit from the high abstraction capability of DNNs. The paper proposes first to extend the hyper-complex algebra to deep neural networks (QDNN) and, then, introduces pre-trained deep quaternion neural networks (QDNN-AE) with dedicated quaternion encoder-decoders (QAE). The experiments conduced on a theme identification task of spoken dialogues from the DECODA data set show, inter alia, that the QDNN-AE reaches a promising gain of 2.2% compared to the standard real-valued DNN-AE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信